Luciano Di Croce

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8850932/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Polycomb group protein EZH2 directly controls DNA methylation. Nature, 2006, 439, 871-874.	13.7	1,964
2	Targeting metastasis-initiating cells through the fatty acid receptor CD36. Nature, 2017, 541, 41-45.	13.7	962
3	Genome Regulation by Polycomb and Trithorax: 70 Years and Counting. Cell, 2017, 171, 34-57.	13.5	842
4	Transcriptional regulation by Polycomb group proteins. Nature Structural and Molecular Biology, 2013, 20, 1147-1155.	3.6	757
5	Methyltransferase Recruitment and DNA Hypermethylation of Target Promoters by an Oncogenic Transcription Factor. Science, 2002, 295, 1079-1082.	6.0	754
6	3D structures of individual mammalian genomes studied by single-cell Hi-C. Nature, 2017, 544, 59-64.	13.7	691
7	Demethylation of H3K27 Regulates Polycomb Recruitment and H2A Ubiquitination. Science, 2007, 318, 447-450.	6.0	678
8	Landscape of somatic mutations and clonal evolution in mantle cell lymphoma. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 18250-18255.	3.3	488
9	DNA Methylation of the Gonadal Aromatase (cyp19a) Promoter Is Involved in Temperature-Dependent Sex Ratio Shifts in the European Sea Bass. PLoS Genetics, 2011, 7, e1002447.	1.5	457
10	Polycomb Complex 2 Is Required for <i>E-cadherin</i> Repression by the Snail1 Transcription Factor. Molecular and Cellular Biology, 2008, 28, 4772-4781.	1.1	390
11	Myc represses transcription through recruitment of DNA methyltransferase corepressor. EMBO Journal, 2005, 24, 336-346.	3.5	375
12	Nonoverlapping Functions of the Polycomb Group Cbx Family of Proteins in Embryonic Stem Cells. Cell Stem Cell, 2012, 10, 47-62.	5.2	294
13	Regulation of gene transcription by Polycomb proteins. Science Advances, 2015, 1, e1500737.	4.7	287
14	Polycomb complexes in stem cells and embryonic development. Development (Cambridge), 2013, 140, 2525-2534.	1.2	279
15	Oligomerization of RAR and AML1 Transcription Factors as a Novel Mechanism of Oncogenic Activation. Molecular Cell, 2000, 5, 811-820.	4.5	273
16	The circadian molecular clock creates epidermal stem cell heterogeneity. Nature, 2011, 480, 209-214.	13.7	273
17	Phf19 links methylated Lys36 of histone H3 to regulation of Polycomb activity. Nature Structural and Molecular Biology, 2012, 19, 1257-1265.	3.6	229
18	Role of the Polycomb Repressive Complex 2 in Acute Promyelocytic Leukemia. Cancer Cell, 2007, 11, 513-525.	7.7	228

#	Article	IF	CITATIONS
19	Roles of the Polycomb group proteins in stem cells and cancer. Cell Death and Disease, 2011, 2, e204-e204.	2.7	217
20	RYBP and Cbx7 Define Specific Biological Functions of Polycomb Complexes in Mouse Embryonic Stem Cells. Cell Reports, 2013, 3, 60-69.	2.9	183
21	The dynamic interactome and genomic targets of Polycomb complexes during stem-cell differentiation. Nature Structural and Molecular Biology, 2016, 23, 682-690.	3.6	171
22	Dnmt3a and Dnmt3b Associate with Enhancers to Regulate Human Epidermal Stem Cell Homeostasis. Cell Stem Cell, 2016, 19, 491-501.	5.2	170
23	The histone variant macroH2A is an epigenetic regulator of key developmental genes. Nature Structural and Molecular Biology, 2009, 16, 1074-1079.	3.6	166
24	Transcription Factors Drive Tet2-Mediated Enhancer Demethylation to Reprogram Cell Fate. Cell Stem Cell, 2018, 23, 727-741.e9.	5.2	156
25	Chromatin structure and epigenetics. Biochemical Pharmacology, 2006, 72, 1563-1569.	2.0	149
26	The Dynamic Regulatory Genome of Capsaspora and the Origin of Animal Multicellularity. Cell, 2016, 165, 1224-1237.	13.5	139
27	Regulation of Human Epidermal Stem Cell Proliferation and Senescence Requires Polycomb- Dependent and -Independent Functions of Cbx4. Cell Stem Cell, 2011, 9, 233-246.	5.2	128
28	Transcriptional activation of polycomb-repressed genes by ZRF1. Nature, 2010, 468, 1124-1128.	13.7	127
29	Polycomb Regulates Mesoderm Cell Fate-Specification in Embryonic Stem Cells through Activation and Repression Mechanisms. Cell Stem Cell, 2015, 17, 300-315.	5.2	124
30	A Family of Vertebrate-Specific Polycombs Encoded by the LCOR/LCORL Genes Balance PRC2 Subtype Activities. Molecular Cell, 2018, 70, 408-421.e8.	4.5	121
31	EPOP Functionally Links Elongin and Polycomb in Pluripotent Stem Cells. Molecular Cell, 2016, 64, 645-658.	4.5	117
32	Two-Step Synergism between the Progesterone Receptor and the DNA-Binding Domain of Nuclear Factor 1 on MMTV Minichromosomes. Molecular Cell, 1999, 4, 45-54.	4.5	114
33	Promoter bivalency favors an open chromatin architecture in embryonic stem cells. Nature Genetics, 2018, 50, 1452-1462.	9.4	113
34	The Bivalent Genome: Characterization, Structure, and Regulation. Trends in Genetics, 2020, 36, 118-131.	2.9	112
35	MBD3, a Component of the NuRD Complex, Facilitates Chromatin Alteration and Deposition of Epigenetic Marks. Molecular and Cellular Biology, 2008, 28, 5912-5923.	1.1	106
36	Emerging roles for Polycomb proteins in cancer. Current Opinion in Genetics and Development, 2016, 36, 50-58.	1.5	105

#	Article	IF	CITATIONS
37	Recruitment of the Histone Methyltransferase SUV39H1 and Its Role in the Oncogenic Properties of the Leukemia-Associated PML-Retinoic Acid Receptor Fusion Protein. Molecular and Cellular Biology, 2006, 26, 1288-1296.	1.1	104
38	The methyl-CpG binding protein MBD1 is required for PML-RARÂ function. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 1400-1405.	3.3	93
39	MacroH2A1 Regulates the Balance between Self-Renewal and Differentiation Commitment in Embryonic and Adult Stem Cells. Molecular and Cellular Biology, 2012, 32, 1442-1452.	1.1	86
40	Heterochromatic gene repression of the retinoic acid pathway in acute myeloid leukemia. Blood, 2007, 109, 4432-4440.	0.6	82
41	Not All H3K4 Methylations Are Created Equal: Mll2/COMPASS Dependency in Primordial Germ Cell Specification. Molecular Cell, 2017, 65, 460-475.e6.	4.5	81
42	Engaging chromatin: PRC2 structure meets function. British Journal of Cancer, 2020, 122, 315-328.	2.9	81
43	Genome-wide activity of unliganded estrogen receptor-α in breast cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4892-4897.	3.3	77
44	Chromatin and RNA Maps Reveal Regulatory Long Noncoding RNAs in Mouse. Molecular and Cellular Biology, 2016, 36, 809-819.	1.1	75
45	Pluripotency and Epigenetic Factors in Mouse Embryonic Stem Cell Fate Regulation. Molecular and Cellular Biology, 2015, 35, 2716-2728.	1.1	74
46	Lysyl oxidaseâ€like 2 (<scp>LOXL</scp> 2) oxidizes trimethylated lysine 4 in histone H3. FEBS Journal, 2016, 283, 4263-4273.	2.2	74
47	Role of <scp>PRC</scp> 2â€associated factors in stem cells and disease. FEBS Journal, 2015, 282, 1723-1735.	2.2	69
48	Jarid2 regulates mouse epidermal stem cell activation and differentiation. EMBO Journal, 2011, 30, 3635-3646.	3.5	68
49	Interaction of endocannabinoid system and steroid Hormones in the control of colon cancer cell growth. Journal of Cellular Physiology, 2012, 227, 250-258.	2.0	67
50	Histone H1 enhances synergistic activation of the MMTV promoter in chromatin. EMBO Journal, 2003, 22, 588-599.	3.5	66
51	Lamin B1 mapping reveals the existence of dynamic and functional euchromatin lamin B1 domains. Nature Communications, 2018, 9, 3420.	5.8	66
52	Chromatin modifying activity of leukaemia associated fusion proteins. Human Molecular Genetics, 2005, 14, R77-R84.	1.4	63
53	Histone demethylase JARID1C inactivation triggers genomic instability in sporadic renal cancer. Journal of Clinical Investigation, 2015, 125, 4625-4637.	3.9	62
54	Polycomb in Stem Cells: PRC1 Branches Out. Cell Stem Cell, 2012, 11, 16-21.	5.2	60

#	Article	IF	CITATIONS
55	PLK1 Signaling in Breast Cancer Cells Cooperates with Estrogen Receptor-Dependent Gene Transcription. Cell Reports, 2013, 3, 2021-2032.	2.9	59
56	A Phosphorylation Switch Regulates the Transcriptional Activation of Cell Cycle Regulator p21 by Histone Deacetylase Inhibitors. Journal of Biological Chemistry, 2010, 285, 41062-41073.	1.6	55
57	miR-155 harnesses Phf19 to potentiate cancer immunotherapy through epigenetic reprogramming of CD8+ T cell fate. Nature Communications, 2019, 10, 2157.	5.8	55
58	Polycomb complexes in normal and malignant hematopoiesis. Journal of Cell Biology, 2019, 218, 55-69.	2.3	52
59	Independent Behavior of Rat Liver LDL Receptor and HMGCoA Reductase under Estrogen Treatment. Biochemical and Biophysical Research Communications, 1996, 224, 345-350.	1.0	47
60	Chromatin-Bound ll̂ºBα Regulates a Subset of Polycomb Target Genes in Differentiation and Cancer. Cancer Cell, 2013, 24, 151-166.	7.7	46
61	From oncogene to tumor suppressor. Cell Cycle, 2012, 11, 1757-1764.	1.3	44
62	ERα as ligand-independent activator of CDH-1 regulates determination and maintenance of epithelial morphology in breast cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 7420-7425.	3.3	43
63	Chromatin capture links the metabolic enzyme AHCY to stem cell proliferation. Science Advances, 2019, 5, eaav2448.	4.7	38
64	Functional and Pathological Roles of AHCY. Frontiers in Cell and Developmental Biology, 2021, 9, 654344.	1.8	38
65	E-box-independent regulation of transcription and differentiation by MYC. Nature Cell Biology, 2011, 13, 1443-1449.	4.6	37
66	Ablâ€kinaseâ€sensitive levels of ERK5 and its intrinsic basal activity contribute to leukaemia cell survival. EMBO Reports, 2005, 6, 63-69.	2.0	35
67	PML4 induces differentiation by Myc destabilization. Oncogene, 2007, 26, 3415-3422.	2.6	35
68	Approaching the molecular and physiological function of macroH2A variants. Epigenetics, 2010, 5, 118-123.	1.3	33
69	The Promoter of the Rat 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase Gene Contains a Tissue-Specific Estrogen-Responsive Region. Molecular Endocrinology, 1999, 13, 1225-1236.	3.7	32
70	DPY30 regulates pathways in cellular senescence through ID protein expression. EMBO Journal, 2013, 32, 2217-2230.	3.5	32
71	Assembly of MMTV promoter minichromosomes with positioned nucleosomes precludes NF1 access but not restriction enzyme cleavage. Nucleic Acids Research, 1998, 26, 3657-3666.	6.5	30
72	ZRF1 controls oncogene-induced senescence through the INK4-ARF locus. Oncogene, 2013, 32, 2161-2168.	2.6	30

#	Article	IF	CITATIONS
73	Epigenetic gene silencing in acute promyelocytic leukemia. Biochemical Pharmacology, 2004, 68, 1247-1254.	2.0	29
74	Zrf1 is required to establish and maintain neural progenitor identity. Genes and Development, 2014, 28, 182-197.	2.7	29
75	Direct interaction between Id1 and Zrf1 controls neural differentiation of embryonic stem cells. EMBO Reports, 2015, 16, 63-70.	2.0	29
76	VAV3 mediates resistance to breast cancer endocrine therapy. Breast Cancer Research, 2014, 16, R53.	2.2	28
77	Neuron typeâ€specific increase in lamin B1 contributes to nuclear dysfunction in Huntington's disease. EMBO Molecular Medicine, 2021, 13, e12105.	3.3	28
78	GATA2 Promotes Hematopoietic Development and Represses Cardiac Differentiation of Human Mesoderm. Stem Cell Reports, 2019, 13, 515-529.	2.3	27
79	ZRF1: a novel epigenetic regulator of stem cell identity and cancer. Cell Cycle, 2015, 14, 510-515.	1.3	26
80	The Polycomb group protein CBX6 is an essential regulator of embryonic stem cell identity. Nature Communications, 2017, 8, 1235.	5.8	26
81	Epigenetics and senescence: Learning from the INK4-ARF locus. Biochemical Pharmacology, 2011, 82, 1361-1370.	2.0	25
82	The DNA demethylating agent decitabine activates the TRAIL pathway and induces apoptosis in acute myeloid leukemia. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2013, 1832, 114-120.	1.8	25
83	Combinatorial assembly and function of chromatin regulatory complexes. Epigenomics, 2011, 3, 567-580.	1.0	24
84	Role of UTX in Retinoic Acid Receptor-Mediated Gene Regulation in Leukemia. Molecular and Cellular Biology, 2014, 34, 3765-3775.	1.1	24
85	The role of Polycomb in stem cell genome architecture. Current Opinion in Cell Biology, 2016, 43, 87-95.	2.6	24
86	RING1B recruits EWSR1-FLI1 and cooperates in the remodeling of chromatin necessary for Ewing sarcoma tumorigenesis. Science Advances, 2020, 6, .	4.7	24
87	PHF19 mediated regulation of proliferation and invasiveness in prostate cancer cells. ELife, 2020, 9, .	2.8	23
88	ZRF1 controls the retinoic acid pathway and regulates leukemogenic potential in acute myeloid leukemia. Oncogene, 2014, 33, 5501-5510.	2.6	22
89	PHF13 is a molecular reader and transcriptional co-regulator of H3K4me2/3. ELife, 2016, 5, .	2.8	22
90	Mutations and deletions of PRC2 in prostate cancer. BioEssays, 2016, 38, 446-454.	1.2	21

#	Article	IF	CITATIONS
91	Setting and resetting of epigenetic marks in malignant transformation and development. BioEssays, 2010, 32, 669-679.	1.2	20
92	The Polycomb-associated factor PHF19 controls hematopoietic stem cell state and differentiation. Science Advances, 2020, 6, eabb2745.	4.7	20
93	Altered epigenetic signals in human disease. Cancer Biology and Therapy, 2004, 3, 831-837.	1.5	19
94	Dynamics of epigenetic modifications in leukemia. Briefings in Functional Genomics, 2011, 10, 18-29.	1.3	19
95	Epigenomic profiling of primate lymphoblastoid cell lines reveals the evolutionary patterns of epigenetic activities in gene regulatory architectures. Nature Communications, 2021, 12, 3116.	5.8	19
96	Effects of the acute myeloid leukemia-associated fusion proteins on nuclear architecture. Seminars in Hematology, 2001, 38, 42-53.	1.8	17
97	Effects of the acute myeloid leukemia[mdash]associated fusion proteins on nuclear architecture. Seminars in Hematology, 2001, 38, 42-53.	1.8	14
98	Transcriptional regulation of Sox2 by the retinoblastoma family of pocket proteins. Oncotarget, 2015, 6, 2992-3002.	0.8	14
99	The flip side of the coin: Role of ZRF1 and histone H2A ubiquitination in transcriptional activation. Cell Cycle, 2011, 10, 745-750.	1.3	12
100	p16INK4a in cellular senescence. Aging, 2013, 5, 590-591.	1.4	12
101	Independent responsiveness of frog liver low-density lipoprotein receptor and HMGCoA reductase to estrogen treatment. Pflugers Archiv European Journal of Physiology, 1997, 435, 107-111.	1.3	11
102	Transâ€generational epigenetic regulation associated with the amelioration of Duchenne Muscular Dystrophy. EMBO Molecular Medicine, 2020, 12, e12063.	3.3	11
103	Polycomb Regulates NF-κB Signaling in Cancer through miRNA. Cancer Cell, 2012, 21, 5-7.	7.7	10
104	CHD4 ensures stem cell lineage fidelity during skeletal muscle regeneration. Stem Cell Reports, 2021, 16, 2089-2098.	2.3	10
105	Differential contribution to gene expression prediction of histone modifications at enhancers or promoters. PLoS Computational Biology, 2021, 17, e1009368.	1.5	9
106	Productive visualization of high-throughput sequencing data using the SeqCode open portable platform. Scientific Reports, 2021, 11, 19545.	1.6	9
107	Nuclear lamina assembly in the first cell cycle of rat liver regeneration. Journal of Cellular Physiology, 1997, 171, 135-142.	2.0	8
108	Polycomb Factor PHF19 Controls Cell Growth and Differentiation Toward Erythroid Pathway in Chronic Myeloid Leukemia Cells. Frontiers in Cell and Developmental Biology, 2021, 9, 655201.	1.8	7

#	Article	IF	CITATIONS
109	Rapid purification of intact minichromosomes over a glycerol cushion. Nucleic Acids Research, 1999, 27, 11e-11.	6.5	7
110	Characterization of the response of growth and differentiation to lipoproteins and agents affecting cholesterol metabolism in murine neuroblastoma cells. International Journal of Developmental Neuroscience, 1994, 12, 77-84.	0.7	6
111	Estrogen Stimulates Intracellular Traffic in the Liver ofRana esculenta complexby Modifying Rab Protein Content. Biochemical and Biophysical Research Communications, 1998, 251, 301-306.	1.0	6
112	Polycombâ€dependent control of cell fate in adult tissue. EMBO Journal, 2016, 35, 2268-2269.	3.5	6
113	Chromatin-Bound Proteome Profiling by Genome Capture. STAR Protocols, 2020, 1, 100014.	0.5	6
114	K313dup is a recurrent CEBPA mutation in de novo acute myeloid leukemia (AML). Annals of Hematology, 2008, 87, 819-827.	0.8	5
115	Thrilling transcription through threonine phosphorylation. Nature Cell Biology, 2008, 10, 5-6.	4.6	5
116	Regulating the Shuttling of Eukaryotic RNA Polymerase II. Molecular and Cellular Biology, 2011, 31, 3918-3920.	1,1	5
117	SpikChIP: a novel computational methodology to compare multiple ChIP-seq using spike-in chromatin. NAR Genomics and Bioinformatics, 2021, 3, Iqab064.	1.5	5
118	Glucocorticoid-induced Fingerprints on Visceral Adipose Tissue Transcriptome and Epigenome. Journal of Clinical Endocrinology and Metabolism, 2022, 107, 150-166.	1.8	5
119	Rapid purification of intact minichromosomes over a glycerol cushion. Nucleic Acids Research, 1999, 27, i-iii.	6.5	4
120	HDAC1, a novel marker for benign teratomas. EMBO Journal, 2010, 29, 3893-3895.	3.5	4
121	Chromatin and Epigenetics at the Forefront: Finding Clues among Peaks. Molecular and Cellular Biology, 2016, 36, 2432-2439.	1.1	4
122	RNA closing the Polycomb circle. Nature Genetics, 2020, 52, 866-867.	9.4	4
123	The changing chromatome as a driver of disease: A panoramic view from different methodologies. BioEssays, 2020, 42, 2000203.	1.2	4
124	Glucocorticoid-induced apoptosis: a simple set of laboratory experiments. Biochemistry and Molecular Biology Education, 2000, 28, 307-312.	0.5	3
125	Barcelona conference on epigenetics and cancer 2015: Coding and non-coding functions of the genome. Epigenetics, 2016, 11, 95-100.	1.3	3
126	Interplay between DNA and RNA Modifications: A Constantly Evolving Process. Epigenomes, 2020, 4, 26.	0.8	2

#	Article	IF	CITATIONS
127	Polycomb complexes in MLL–AF9-related leukemias. Current Opinion in Genetics and Development, 2022, 75, 101920.	1.5	2
128	Editorial overview: Cancer genomics: Darwin meets Waddington: the interplay between cancer genomes and epigenomes. Current Opinion in Genetics and Development, 2016, 36, iv-vi.	1.5	1
129	Inhibitory protein puts a lid on an epigenetic marker. Nature, 2019, 573, 38-39.	13.7	1
130	In vivo temporal resolution of acute promyelocytic leukemia progression reveals a role of <i>Klf4</i> in suppressing early leukemic transformation. Genes and Development, 2022, 36, 451-467.	2.7	1
131	Analysis of Endogenous Protein Interactions of Polycomb Group of Proteins in Mouse Embryonic Stem Cells. Methods in Molecular Biology, 2016, 1480, 153-165.	0.4	0
132	The pluripotent cell cycle. , 2020, , 115-129.		0
133	PRC2 shields the potency of human stem cells. Nature Cell Biology, 2022, 24, 806-808.	4.6	0