
Qingkun Meng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8850834/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dandelion-like nickel/cobalt metal-organic framework based electrode materials for high performance supercapacitors. Journal of Colloid and Interface Science, 2018, 531, 83-90.	5.0	277
2	Facile synthesis of cuboid Ni-MOF for high-performance supercapacitors. Journal of Materials Science, 2018, 53, 6807-6818.	1.7	193
3	Facile synthesis of Ni3S2 and Co9S8 double-size nanoparticles decorated on rGO for high-performance supercapacitor electrode materials. Electrochimica Acta, 2017, 226, 69-78.	2.6	101
4	Design and fabrication of a metastable \hat{l}^2 -type titanium alloy with ultralow elastic modulus and high strength. Scientific Reports, 2015, 5, 14688.	1.6	100
5	Hierarchical NiS@CoS with Controllable Coreâ€Shell Structure by Twoâ€Step Strategy for Supercapacitor Electrodes. Advanced Materials Interfaces, 2020, 7, 1901618.	1.9	98
6	Facile Synthesis of Agâ€Decorated Ni ₃ S ₂ Nanosheets with 3D Bush Structure Grown on rGO and Its Application as Positive Electrode Material in Asymmetric Supercapacitor. Advanced Materials Interfaces, 2018, 5, 1700985.	1.9	96
7	Polyhedral ternary oxide FeCo2O4: A new electrode material for supercapacitors. Journal of Alloys and Compounds, 2018, 735, 1339-1343.	2.8	89
8	One‣tep Synthesis of Nanostructured CoS ₂ Grown on Titanium Carbide MXene for Highâ€Performance Asymmetrical Supercapacitors. Advanced Materials Interfaces, 2020, 7, 1901659.	1.9	77
9	Hierarchical Ni-Co layered double hydroxide nanosheets on functionalized 3D-RGO films for high energy density asymmetric supercapacitor. Applied Surface Science, 2017, 426, 148-159.	3.1	72
10	Ultrathin Ni–Co LDH nanosheets grown on carbon fiber cloth via electrodeposition for high-performance supercapacitors. Journal of Materials Science: Materials in Electronics, 2019, 30, 13360-13371.	1.1	45
11	Self-supported 3D layered zinc/nickel metal-organic-framework with enhanced performance for supercapacitors. Journal of Materials Science: Materials in Electronics, 2019, 30, 18101-18110.	1.1	45
12	One-step hydrothermal synthesis of Ni3S4@MoS2 nanosheet on carbon fiber paper as a binder-free anode for supercapacitor. Journal of Materials Science: Materials in Electronics, 2017, 28, 12747-12754.	1.1	43
13	Ni3S4 supported on carbon cloth for high-performance flexible all-solid-state asymmetric supercapacitors. Journal of Materials Science: Materials in Electronics, 2018, 29, 2525-2536.	1.1	39
14	Structure Dependence of Fe o Hydroxides on Fe/Co Ratio and Their Application for Supercapacitors. Particle and Particle Systems Characterization, 2017, 34, 1600239.	1.2	37
15	Microstructure of Al _{1.3} CrFeNi eutectic high entropy alloy and oxidation behavior at 1000 °C. Journal of Materials Research, 2017, 32, 2109-2116.	1.2	33
16	Construction of NiCo2O4@Ni0.85Se core-shell nanorod arrays on Ni foam as advanced materials for an asymmetric supercapacitor. Journal of Alloys and Compounds, 2019, 778, 234-238.	2.8	33
17	Microstructural evolution and mechanical behavior of metastable β-type Ti–25Nb–2Mo–4Sn alloy with high strength and low modulusMicrostructural evolution and mechanical behavior of metastable β-type Ti–25Nb–2Mo–4Sn alloy with high strength and low modulusretain–>. Progress in Natural Science: Materials International. 2013. 23. 174-182.	1.8	31
18	Facile synthesis of hierarchical NiCoP nanowires@NiCoP nanosheets core–shell nanoarrays for high-performance asymmetrical supercapacitor. Journal of Materials Science, 2020, 55, 1157-1169.	1.7	31

#	Article	IF	CITATIONS
19	Facile synthesis of NiCoP nanosheets on carbon cloth and their application as positive electrode material in asymmetric supercapacitor. Ionics, 2020, 26, 355-366.	1.2	31
20	Facile Construction of 3D Reduced Graphene Oxide Wrapped Ni ₃ S ₂ Nanoparticles on Ni Foam for Highâ€Performance Asymmetric Supercapacitor Electrodes. Particle and Particle Systems Characterization, 2017, 34, 1700196.	1.2	30
21	In situ synchrotron X-ray diffraction study of deformation behaviour of a metastable β-type Ti-33Nb-4Sn alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 692, 81-89.	2.6	29
22	Design of low modulus Î ² -type titanium alloys by tuning shear modulus C44. Journal of Alloys and Compounds, 2018, 745, 579-585.	2.8	29
23	Cobalt oxide composites derived from zeolitic imidazolate framework for high-performance supercapacitor electrode. Journal of Materials Science: Materials in Electronics, 2017, 28, 14019-14025.	1.1	24
24	Facile synthesis of nickel metal–organic framework derived hexagonal flaky NiO for supercapacitors. Journal of Materials Science: Materials in Electronics, 2018, 29, 2477-2483.	1.1	24
25	An Asymmetric Supercapacitor Based on Activated Porous Carbon Derived from Walnut Shells and NiCo ₂ O ₄ Nanoneedle Arrays Electrodes. Journal of Nanoscience and Nanotechnology, 2018, 18, 5600-5608.	0.9	24
26	A Novel Metastable Ti-25Nb-2Mo-4Sn Alloy with High Strength and Low Young's Modulus. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43, 3447-3451.	1.1	23
27	A novel metastable β-type Zr-12Nb-4Sn alloy with low Young's modulus and low magnetic susceptibility. Journal of Alloys and Compounds, 2018, 745, 234-239.	2.8	23
28	CuCo2S4 nanotubes on carbon fiber papers for high-performance all-solid-state asymmetric supercapacitors. Journal of Materials Science: Materials in Electronics, 2018, 29, 8636-8648.	1.1	23
29	Facile synthesis of mesoporous ZnCo2O4 nanosheet arrays grown on rGO as binder-free electrode for high-performance asymmetric supercapacitor. Journal of Materials Science, 2018, 53, 16074-16085.	1.7	23
30	Facile synthesis of CoNi2S4 nanoparticles grown on carbon fiber cloth for supercapacitor application. Journal of Materials Science: Materials in Electronics, 2019, 30, 19077-19086.	1.1	23
31	Design of a Scalable Dendritic Copper@Ni ²⁺ , Zn ²⁺ Cation-Substituted Cobalt Carbonate Hydroxide Electrode for Efficient Energy Storage. ACS Applied Materials & Interfaces, 2021, 13, 39205-39214.	4.0	23
32	Hydrothermal Synthesis of Ni-MOF Vulcanized Derivatives for High-Performance Supercapacitors. Nano, 2019, 14, 1950032.	0.5	22
33	Influence of SnO2 Nanoparticles Addition on Microstructure, Thermal Analysis, and Interfacial IMC Growth of Sn1.0Ag0.7Cu Solder. Journal of Electronic Materials, 2017, 46, 4197-4205.	1.0	21
34	Self-Supported Ni0.85Se Nanosheets Array on Carbon Fiber Cloth for a High-Performance Asymmetric Supercapacitor. Journal of Electronic Materials, 2018, 47, 7002-7010.	1.0	21
35	Influence of Brazing Technology on the Microstructure and Properties of YG20C cemented carbide and 16Mn steel joints. Welding in the World, Le Soudage Dans Le Monde, 2016, 60, 1269-1275.	1.3	20
36	A metastable β-type Zr-4Mo-4Sn alloy with low cost, low Young's modulus and low magnetic susceptibility for biomedical applications. Journal of Alloys and Compounds, 2018, 754, 232-237.	2.8	20

#	Article	IF	CITATIONS
37	Effect of nickel (Ni) on the growth rate of Cu6Sn5 intermetallic compounds between Sn–Cu–Bi solder and Cu substrate. Journal of Materials Science: Materials in Electronics, 2019, 30, 2186-2191.	1.1	20
38	Synthesis of Cu2O by oxidation-assisted dealloying method for flexible all-solid-state asymmetric supercapacitors. Journal of Materials Science: Materials in Electronics, 2018, 29, 2080-2090.	1.1	19
39	Self-supported NiSe@Ni3S2 core-shell composite on Ni foam for a high-performance asymmetric supercapacitor. Ionics, 2020, 26, 3997-4007.	1.2	19
40	Co ₃ O ₄ nanocrystals derived from a zeolitic imidazolate framework on Ni foam as high-performance supercapacitor electrode material. RSC Advances, 2016, 6, 61803-61808.	1.7	18
41	Facile synthesis of N-doped activated carbon derived from cotton and CuCo2O4 nanoneedle arrays electrodes for all-solid-state asymmetric supercapacitor. Journal of Materials Science: Materials in Electronics, 2019, 30, 9877-9887.	1.1	17
42	NiCo2S4 decorated multilayer titanium carbide MXene electrode for asymmetric supercapacitor. Ionics, 2022, 28, 2979-2989.	1.2	17
43	Metastable β-type Ti-30Nb-1Mo-4Sn Alloy with Ultralow Young's Modulus and High Strength. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 547-550.	1.1	16
44	Design and fabrication of a $(\hat{l}^2+\hat{l}\pm")$ dual-phase Ti-Nb-Sn alloy with linear deformation behavior for biomedical applications. Journal of Alloys and Compounds, 2019, 805, 517-521.	2.8	16
45	Synthesis of Ultrathin MnO2 Nanosheets/Bagasse Derived Porous Carbon Composite for Supercapacitor with High Performance. Journal of Electronic Materials, 2019, 48, 3026-3035.	1.0	14
46	A sandwich-structured Nb/NiTi composite with good bio-compatibility, near-linear-elastic deformation and large elastic admissible strain. Composites Part B: Engineering, 2021, 207, 108586.	5.9	14
47	Effects of Carbonization Temperature on Nature of Nanostructured Electrode Materials Derived from Fe-MOF for Supercapacitors. Electronic Materials Letters, 2018, 14, 548-555.	1.0	13
48	Nanospherical Cu2O/NiO synthesized by electrochemical dealloying as efficient electrode materials for supercapacitors. Materials Letters, 2020, 265, 127300.	1.3	13
49	Flexible wire-shaped symmetric supercapacitors with Zn–Co layered double hydroxide nanosheets grown on Ag-coated cotton wire. Journal of Materials Science, 2020, 55, 16683-16696.	1.7	12
50	High performance fiber-shaped all-solid-state symmetric supercapacitor based on mesoporous CuCo2S4 nanosheets. Journal of Materials Science: Materials in Electronics, 2019, 30, 667-676.	1.1	11
51	Facile synthesis of copper sulfides with different shapes for high-performance supercapacitors. Journal of Materials Science: Materials in Electronics, 2017, 28, 10720-10729.	1.1	10
52	All-solid-state asymmetric supercapacitor based on N-doped activated carbon derived from polyvinylidene fluoride and ZnCo2O4 nanosheet arrays. Journal of Materials Science: Materials in Electronics, 2018, 29, 2120-2130.	1.1	10
53	An improved bioinspired strategy to construct nitrogen and phosphorus dual-doped network porous carbon with boosted kinetics potassium ion capacitors. Nanoscale, 2022, 14, 6339-6348.	2.8	10
54	Facile synthesis of Cu1.96S nanoparticles for enhanced energy density in flexible all-solid-state asymmetric supercapacitors. Journal of Materials Science: Materials in Electronics, 2018, 29, 11187-11198.	1.1	9

#	Article	IF	CITATIONS
55	3D core-shell pistil-like MnCo2O4.5/polyaniline nanocomposites as high performance supercapacitor electrodes. Composite Interfaces, 2020, 27, 631-644.	1.3	9
56	Fabrication and Degradation Properties of Nanoporous Copper with Tunable Pores by Dealloying Amorphous Ti-Cu Alloys with Minor Co Addition. Journal of Materials Engineering and Performance, 2021, 30, 1759-1767.	1.2	8
57	Threeâ€dimensional nanoporous copper with tunable structure prepared by dealloying titanium–copper–cobalt metallic glasses for supercapacitors. Micro and Nano Letters, 2020, 15, 283-286.	0.6	8
58	Hierarchical NiCo2S4@Ni3S2 core/shell nanorod arrays supported on carbon cloth for all-solid-state flexible asymmetric supercapacitors. Journal of Materials Science: Materials in Electronics, 2019, 30, 13462-13473.	1.1	7
59	One-Step Hydrothermal Synthesis of CoNi ₂ S ₄ for Hybrid Supercapacitor Electrodes. Nano, 2019, 14, 1950088.	0.5	7
60	In situ synchrotron X-ray diffraction study of stress-induced martensitic transformation in a metastable β-type Ti-33Nb-4Sn alloy. Intermetallics, 2017, 86, 20-24.	1.8	6
61	ZnO@Ni–Co–S Core–Shell Nanorods-Decorated Carbon Fibers as Advanced Electrodes for High-Performance Supercapacitors. Nano, 2018, 13, 1850148.	0.5	6
62	Effects of pouring temperature on interfacial reaction between Ti-47.5Al-2.5V-1Cr alloy and mold during centrifugal casting. Journal Wuhan University of Technology, Materials Science Edition, 2016, 31, 1105-1108.	0.4	5
63	Electrodeposition of Ni–Co double hydroxide composite nanosheets on Fe substrate for highâ€performance supercapacitor electrode. Micro and Nano Letters, 2016, 11, 837-839.	0.6	5
64	Construction of layered C@MnNiCo–OH/Ni3S2 core–shell heterostructure with enhanced electrochemical performance for asymmetric supercapacitor. Journal of Materials Science: Materials in Electronics, 2021, 32, 11145-11157.	1.1	5
65	In Situ Synchrotron X-ray Diffraction Investigations of the Nonlinear Deformation Behavior of a Low Modulus β-Type Ti36Nb5Zr Alloy. Metals, 2020, 10, 1619.	1.0	4
66	Single crystal shear moduli of β-phase stabilized by thermomechanical treatment in TiNbSn alloys with ultralow elastic modulus. Materials Letters, 2021, 285, 129103.	1.3	4
67	Enhanced performance of mesoporous NiCo ₂ S ₄ nanosheets fibreâ€shaped electrode for supercapacitor. Micro and Nano Letters, 2021, 16, 263-267.	0.6	4
68	Design and fabrication of a Nb/NiTi superelastic composite with high critical stress for inducing martensitic transformation and large recoverable strain for biomedical applications. Materials Science and Engineering C, 2020, 112, 110894.	3.8	3
69	Achieving a combination of decent biocompatibility and large near-linear-elastic deformation behavior in shell-core-like structural TiNb/NiTi composite. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 123, 104789.	1.5	3
70	Oneâ€pot synthesis of flake Cu 1.81 S/C composite for highâ€performance supercapactiors electrodes. Micro and Nano Letters, 2017, 12, 87-89.	0.6	2
71	Fabrication of nanoporous NiO@CoO composites by dealloying method as ultra-high capacitance electrodes. Journal of Materials Science: Materials in Electronics, 2019, 30, 20311-20319.	1.1	2
72	Wear behavior of in-situ TiC particles reinforced aluminum matrix composite. Journal Wuhan University of Technology, Materials Science Edition, 2017, 32, 552-556.	0.4	1

#	Article	IF	CITATIONS
73	Preparation and capacitance properties of Al-doped hierarchical TiO2 nanostructure by oxidation of Ti–8Al alloy. Journal of Materials Science: Materials in Electronics, 2017, 28, 13770-13779.	1.1	1
74	Activation properties of reticulate Ni3S2 electrode materials grown on nickel foam for high performance supercapacitors. Journal of Materials Science: Materials in Electronics, 2018, 29, 20775-20782.	1.1	1
75	Effect of Silicon on the Microstructure and Performance of the New Binary Deep Eutectic Ti–Cu–Zr–Ni-Based Filler Metal. Metals, 2018, 8, 481.	1.0	1
76	The effect of temperature on morphology and electrochemical properties of NiCo ₂ S ₄ by hydrothermal synthesis. Functional Materials Letters, 2018, 11, 1850063.	0.7	1
77	Electrothermal, magnetic properties and microstructure of CrFeNiTi <i>_x</i> compositionally complex alloys. Ferroelectrics, 2021, 584, 100-112.	0.3	1