Carolina S Ilkow

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8850817/publications.pdf

Version: 2024-02-01

40 papers

1,514 citations

430874 18 h-index 36 g-index

42 all docs 42 docs citations

42 times ranked 1866 citing authors

#	Article	IF	CITATIONS
1	Single-dose replicating poxvirus vector-based RBD vaccine drives robust humoral and TÂcell immune response against SARS-CoV-2 infection. Molecular Therapy, 2022, 30, 1885-1896.	8.2	16
2	Intravesical immunotherapy with a GM-CSF armed oncolytic vesicular stomatitis virus improves outcome in bladder cancer. Molecular Therapy - Oncolytics, 2022, 24, 507-521.	4.4	7
3	Virally programmed extracellular vesicles sensitize cancer cells to oncolytic virus and small molecule therapy. Nature Communications, 2022, 13, 1898.	12.8	16
4	Identification of FDA-approved Bifonazole as SARS-CoV-2 blocking agent following a bioreporter drug screen. Molecular Therapy, 2022, , .	8.2	5
5	Characterization of Critical Determinants of ACE2–SARS CoV-2 RBD Interaction. International Journal of Molecular Sciences, 2021, 22, 2268.	4.1	24
6	Personalized oncology and BRAFK601N melanoma: model development, drug discovery, and clinical correlation. Journal of Cancer Research and Clinical Oncology, 2021, 147, 1365-1378.	2.5	2
7	A High-Throughput NanoBiT-Based Serological Assay Detects SARS-CoV-2 Seroconversion. Nanomaterials, 2021, 11, 807.	4.1	7
8	SARS-CoV-2 S1 NanoBiT: A nanoluciferase complementation-based biosensor to rapidly probe SARS-CoV-2 receptor recognition. Biosensors and Bioelectronics, 2021, 180, 113122.	10.1	21
9	Nanoluciferase complementation-based bioreporter reveals the importance of N-linked glycosylation of SARS-CoV-2ÂS for viral entry. Molecular Therapy, 2021, 29, 1984-2000.	8.2	19
10	Detection of SARS-CoV-2 Neutralizing Antibodies using High-Throughput Fluorescent Imaging of Pseudovirus Infection. Journal of Visualized Experiments, 2021, , .	0.3	0
11			
11	Oncolytic Virus Immunotherapy. Cancers, 2021, 13, 3672.	3.7	4
12	Oncolytic Virus Immunotherapy. Cancers, 2021, 13, 3672. Luciferase-Based Biosensors in the Era of the COVID-19 Pandemic. ACS Nanoscience Au, 2021, 1, 15-37.	3.7	9
			9
12	Luciferase-Based Biosensors in the Era of the COVID-19 Pandemic. ACS Nanoscience Au, 2021, 1, 15-37. Detection of SARS-CoV-2 Receptor-Binding Domain Antibody using a HiBiT-Based Bioreporter. Journal of	4.8	
12	Luciferase-Based Biosensors in the Era of the COVID-19 Pandemic. ACS Nanoscience Au, 2021, 1, 15-37. Detection of SARS-CoV-2 Receptor-Binding Domain Antibody using a HiBiT-Based Bioreporter. Journal of Visualized Experiments, 2021, , . Redirecting oncolytic viruses: Engineering opportunists to take control of the tumour	0.3	1
12 13 14	Luciferase-Based Biosensors in the Era of the COVID-19 Pandemic. ACS Nanoscience Au, 2021, 1, 15-37. Detection of SARS-CoV-2 Receptor-Binding Domain Antibody using a HiBiT-Based Bioreporter. Journal of Visualized Experiments, 2021, , . Redirecting oncolytic viruses: Engineering opportunists to take control of the tumour microenvironment. Cytokine and Growth Factor Reviews, 2020, 56, 102-114. Hippo Signaling Pathway as a Central Mediator of Receptors Tyrosine Kinases (RTKs) in Tumorigenesis.	4.8 0.3 7.2	7
12 13 14 15	Luciferase-Based Biosensors in the Era of the COVID-19 Pandemic. ACS Nanoscience Au, 2021, 1, 15-37. Detection of SARS-CoV-2 Receptor-Binding Domain Antibody using a HiBiT-Based Bioreporter. Journal of Visualized Experiments, 2021, , . Redirecting oncolytic viruses: Engineering opportunists to take control of the tumour microenvironment. Cytokine and Growth Factor Reviews, 2020, 56, 102-114. Hippo Signaling Pathway as a Central Mediator of Receptors Tyrosine Kinases (RTKs) in Tumorigenesis. Cancers, 2020, 12, 2042. Implications for SARS-CoV-2 Vaccine Design: Fusion of Spike Glycoprotein Transmembrane Domain to	4.8 0.3 7.2 3.7	1 7 14

#	Article	IF	CITATIONS
19	Dimethyl fumarate potentiates oncolytic virotherapy through NF- \hat{l}^{Q} B inhibition. Science Translational Medicine, 2018, 10, .	12.4	44
20	Enhanced susceptibility of cancer cells to oncolytic rhabdo-virotherapy by expression of Nodamura virus protein B2 as a suppressor of RNA interference., 2018, 6, 62.		8
21	Lighting a Fire in the Tumor Microenvironment Using Oncolytic Immunotherapy. EBioMedicine, 2018, 31, 17-24.	6.1	115
22	A Viro-Immunotherapy Triple Play for the Treatment of Glioblastoma. Cancer Cell, 2017, 32, 133-134.	16.8	13
23	Complement inhibition enables tumor delivery of LCMV glycoprotein pseudotyped viruses in the presence of antiviral antibodies. Molecular Therapy - Oncolytics, 2016, 3, 16027.	4.4	11
24	VEGF-Mediated Induction of PRD1-BF1/Blimp1 Expression Sensitizes Tumor Vasculature to Oncolytic Virus Infection. Cancer Cell, 2015, 28, 210-224.	16.8	77
25	Microtubule disruption synergizes with oncolytic virotherapy by inhibiting interferon translation and potentiating bystander killing. Nature Communications, 2015, 6, 6410.	12.8	42
26	Complement Inhibition Prevents Oncolytic Vaccinia Virus Neutralization in Immune Humans and Cynomolgus Macaques. Molecular Therapy, 2015, 23, 1066-1076.	8.2	65
27	Reciprocal cellular cross-talk within the tumor microenvironment promotes oncolytic virus activity. Nature Medicine, 2015, 21, 530-536.	30.7	118
28	Maraba MG1 Virus Enhances Natural Killer Cell Function via Conventional Dendritic Cells to Reduce Postoperative Metastatic Disease. Molecular Therapy, 2014, 22, 1320-1332.	8.2	60
29	From Scourge to Cure: Tumour-Selective Viral Pathogenesis as a New Strategy against Cancer. PLoS Pathogens, 2014, 10, e1003836.	4.7	61
30	Smac mimetics and innate immune stimuli synergize to promote tumor death. Nature Biotechnology, 2014, 32, 182-190.	17.5	104
31	Phosphorylation and membrane association of the Rubella virus capsid protein is important for its anti-apoptotic function. Cellular Microbiology, 2014, 16, 1201-1210.	2.1	9
32	Oncolytic Vaccinia Virus Disrupts Tumor-Associated Vasculature in Humans. Cancer Research, 2013, 73, 1265-1275.	0.9	193
33	The Oncolytic Poxvirus JX-594 Selectively Replicates in and Destroys Cancer Cells Driven by Genetic Pathways Commonly Activated in Cancers. Molecular Therapy, 2012, 20, 749-758.	8.2	231
34	Achieving efficient systemic delivery of oncolytic Vaccinia virus. Immunobiology, 2012, 217, 1135.	1.9	0
35	The Rubella Virus Capsid Is an Anti-Apoptotic Protein that Attenuates the Pore-Forming Ability of Bax. PLoS Pathogens, 2011, 7, e1001291.	4.7	33
36	Rubella virus capsid protein: a small protein with big functions. Future Microbiology, 2010, 5, 571-584.	2.0	11

#	Article	IF	CITATIONS
37	The Rubella Virus Capsid Protein Inhibits Mitochondrial Import. Journal of Virology, 2010, 84, 119-130.	3.4	34
38	Modulation of signaling pathways by RNA virus capsid proteins. Cellular Signalling, 2008, 20, 1227-1236.	3.6	19
39	Rubella Virus Capsid Protein Interacts with Poly(A)-Binding Protein and Inhibits Translation. Journal of Virology, 2008, 82, 4284-4294.	3.4	53
40	Analyses of Phosphorylation Events in the Rubella Virus Capsid Protein: Role in Early Replication Events. Journal of Virology, 2006, 80, 6917-6925.	3.4	21