Carolina S Ilkow

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8850817/publications.pdf

Version: 2024-02-01

40 papers

1,514 citations

430874 18 h-index 36 g-index

42 all docs 42 docs citations

42 times ranked 1866 citing authors

#	Article	IF	CITATIONS
1	The Oncolytic Poxvirus JX-594 Selectively Replicates in and Destroys Cancer Cells Driven by Genetic Pathways Commonly Activated in Cancers. Molecular Therapy, 2012, 20, 749-758.	8.2	231
2	Oncolytic Vaccinia Virus Disrupts Tumor-Associated Vasculature in Humans. Cancer Research, 2013, 73, 1265-1275.	0.9	193
3	Reciprocal cellular cross-talk within the tumor microenvironment promotes oncolytic virus activity. Nature Medicine, 2015, 21, 530-536.	30.7	118
4	Lighting a Fire in the Tumor Microenvironment Using Oncolytic Immunotherapy. EBioMedicine, 2018, 31, 17-24.	6.1	115
5	Smac mimetics and innate immune stimuli synergize to promote tumor death. Nature Biotechnology, 2014, 32, 182-190.	17.5	104
6	VEGF-Mediated Induction of PRD1-BF1/Blimp1 Expression Sensitizes Tumor Vasculature to Oncolytic Virus Infection. Cancer Cell, 2015, 28, 210-224.	16.8	77
7	Complement Inhibition Prevents Oncolytic Vaccinia Virus Neutralization in Immune Humans and Cynomolgus Macaques. Molecular Therapy, 2015, 23, 1066-1076.	8.2	65
8	From Scourge to Cure: Tumour-Selective Viral Pathogenesis as a New Strategy against Cancer. PLoS Pathogens, 2014, 10, e1003836.	4.7	61
9	Maraba MG1 Virus Enhances Natural Killer Cell Function via Conventional Dendritic Cells to Reduce Postoperative Metastatic Disease. Molecular Therapy, 2014, 22, 1320-1332.	8.2	60
10	Rubella Virus Capsid Protein Interacts with Poly(A)-Binding Protein and Inhibits Translation. Journal of Virology, 2008, 82, 4284-4294.	3.4	53
11	Dimethyl fumarate potentiates oncolytic virotherapy through NF- $\hat{\mathbb{P}}$ B inhibition. Science Translational Medicine, 2018, 10, .	12.4	44
12	Microtubule disruption synergizes with oncolytic virotherapy by inhibiting interferon translation and potentiating bystander killing. Nature Communications, 2015, 6, 6410.	12.8	42
13	The Rubella Virus Capsid Protein Inhibits Mitochondrial Import. Journal of Virology, 2010, 84, 119-130.	3.4	34
14	The Rubella Virus Capsid Is an Anti-Apoptotic Protein that Attenuates the Pore-Forming Ability of Bax. PLoS Pathogens, 2011, 7, e1001291.	4.7	33
15	Characterization of Critical Determinants of ACE2–SARS CoV-2 RBD Interaction. International Journal of Molecular Sciences, 2021, 22, 2268.	4.1	24
16	Analyses of Phosphorylation Events in the Rubella Virus Capsid Protein: Role in Early Replication Events. Journal of Virology, 2006, 80, 6917-6925.	3.4	21
17	SARS-CoV-2 S1 NanoBiT: A nanoluciferase complementation-based biosensor to rapidly probe SARS-CoV-2 receptor recognition. Biosensors and Bioelectronics, 2021, 180, 113122.	10.1	21
18	Implications for SARS-CoV-2 Vaccine Design: Fusion of Spike Glycoprotein Transmembrane Domain to Receptor-Binding Domain Induces Trimerization. Membranes, 2020, 10, 215.	3.0	20

#	Article	IF	Citations
19	Modulation of signaling pathways by RNA virus capsid proteins. Cellular Signalling, 2008, 20, 1227-1236.	3.6	19
20	Nanoluciferase complementation-based bioreporter reveals the importance of N-linked glycosylation of SARS-CoV-2ÂS for viral entry. Molecular Therapy, 2021, 29, 1984-2000.	8.2	19
21	Assessing the Completeness of Reporting in Preclinical Oncolytic Virus Therapy Studies. Molecular Therapy - Oncolytics, 2019, 14, 179-187.	4.4	16
22	Single-dose replicating poxvirus vector-based RBD vaccine drives robust humoral and TÂcell immune response against SARS-CoV-2 infection. Molecular Therapy, 2022, 30, 1885-1896.	8.2	16
23	Virally programmed extracellular vesicles sensitize cancer cells to oncolytic virus and small molecule therapy. Nature Communications, 2022, 13, 1898.	12.8	16
24	Hippo Signaling Pathway as a Central Mediator of Receptors Tyrosine Kinases (RTKs) in Tumorigenesis. Cancers, 2020, 12, 2042.	3.7	14
25	A Viro-Immunotherapy Triple Play for the Treatment of Glioblastoma. Cancer Cell, 2017, 32, 133-134.	16.8	13
26	Rubella virus capsid protein: a small protein with big functions. Future Microbiology, 2010, 5, 571-584.	2.0	11
27	Complement inhibition enables tumor delivery of LCMV glycoprotein pseudotyped viruses in the presence of antiviral antibodies. Molecular Therapy - Oncolytics, 2016, 3, 16027.	4.4	11
28	Phosphorylation and membrane association of the Rubella virus capsid protein is important for its anti-apoptotic function. Cellular Microbiology, 2014, 16, 1201-1210.	2.1	9
29	Luciferase-Based Biosensors in the Era of the COVID-19 Pandemic. ACS Nanoscience Au, 2021, 1, 15-37.	4.8	9
30	Enhanced susceptibility of cancer cells to oncolytic rhabdo-virotherapy by expression of Nodamura virus protein B2 as a suppressor of RNA interference. , 2018, 6, 62.		8
31	Redirecting oncolytic viruses: Engineering opportunists to take control of the tumour microenvironment. Cytokine and Growth Factor Reviews, 2020, 56, 102-114.	7.2	7
32	A High-Throughput NanoBiT-Based Serological Assay Detects SARS-CoV-2 Seroconversion. Nanomaterials, 2021, 11, 807.	4.1	7
33	Intravesical immunotherapy with a GM-CSF armed oncolytic vesicular stomatitis virus improves outcome in bladder cancer. Molecular Therapy - Oncolytics, 2022, 24, 507-521.	4.4	7
34	Identification of FDA-approved Bifonazole as SARS-CoV-2 blocking agent following a bioreporter drug screen. Molecular Therapy, 2022, , .	8.2	5
35	Oncolytic Virus Immunotherapy. Cancers, 2021, 13, 3672.	3.7	4
36	Personalized oncology and BRAFK601N melanoma: model development, drug discovery, and clinical correlation. Journal of Cancer Research and Clinical Oncology, 2021, 147, 1365-1378.	2.5	2

#	Article	IF	CITATIONS
37	Detection of SARS-CoV-2 Receptor-Binding Domain Antibody using a HiBiT-Based Bioreporter. Journal of Visualized Experiments, 2021, , .	0.3	1
38	Achieving efficient systemic delivery of oncolytic Vaccinia virus. Immunobiology, 2012, 217, 1135.	1.9	0
39	Detection of SARS-CoV-2 Neutralizing Antibodies using High-Throughput Fluorescent Imaging of Pseudovirus Infection. Journal of Visualized Experiments, 2021, , .	0.3	0
40	Generating Primary Models of Human Cancer to Aid in the Development of Clinically Relevant Oncolytic Viruses. Methods in Molecular Biology, 2020, 2058, 271-284.	0.9	0