
## Miguel LuÃ-s

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8850746/publications.pdf Version: 2024-02-01



MICHELLIÃS

| #  | Article                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Handling Producer and Consumer Mobility in IoT Publish–Subscribe Named Data Networks. IEEE<br>Internet of Things Journal, 2022, 9, 868-884.      | 5.5 | 10        |
| 2  | Consumer Mobility Awareness in Named Data Networks. IEEE Access, 2022, 10, 18156-18168.                                                          | 2.6 | 2         |
| 3  | Forwarding in Energy-Constrained Wireless Information Centric Networks. Sensors, 2022, 22, 1438.                                                 | 2.1 | 4         |
| 4  | On the Real Experimentation and Simulation Models for Millimeter-Wave. IEEE Access, 2022, 10, 51191-51208.                                       | 2.6 | 3         |
| 5  | Insights from the Experimentation of Named Data Networks in Mobile Wireless Environments. Future<br>Internet, 2022, 14, 196.                     | 2.4 | 2         |
| 6  | A Fair Channel Hopping Scheme for LoRa Networks with Multiple Single-Channel Gateways. Sensors,<br>2022, 22, 5260.                               | 2.1 | 2         |
| 7  | Context-based caching in mobile information-centric networks. Computer Communications, 2022, 193, 214-223.                                       | 3.1 | 2         |
| 8  | An Adaptive Learning-Based Approach for Vehicle Mobility Prediction. IEEE Access, 2021, 9, 13671-13682.                                          | 2.6 | 9         |
| 9  | Improving LoRa Network Simulator for a More Realistic Approach on LoRaWAN. , 2021, , .                                                           |     | 3         |
| 10 | Using Aerial and Vehicular NFV Infrastructures to Agilely Create Vertical Services. Sensors, 2021, 21, 1342.                                     | 2.1 | 4         |
| 11 | LoRa Connectivity Analysis for Urban Coverage in Real Mobile Environments. , 2021, , .                                                           |     | 2         |
| 12 | Real-time video frame differentiation in multihomed VANETs. Wireless Networks, 2021, 27, 2559-2575.                                              | 2.0 | 0         |
| 13 | Bringing Network Coding into SDN: Architectural Study for Meshed Heterogeneous Communications.<br>IEEE Communications Magazine, 2021, 59, 37-43. | 4.9 | 11        |
| 14 | Machine Learning for the Dynamic Positioning of UAVs for Extended Connectivity. Sensors, 2021, 21, 4618.                                         | 2.1 | 4         |
| 15 | Large-Scale LoRa Networks: A Mode Adaptive Protocol. IEEE Internet of Things Journal, 2021, 8, 13487-13502.                                      | 5.5 | 4         |
| 16 | Exploring software defined networks for seamless handovers in vehicular networks. Vehicular<br>Communications, 2021, 31, 100372.                 | 2.7 | 4         |
| 17 | ndnIoT-FC: IoT Devices as First-Class Traffic in Name Data Networks. Future Internet, 2020, 12, 207.                                             | 2.4 | 9         |
|    |                                                                                                                                                  |     |           |

MIGUEL LUÃS

| #  | Article                                                                                                                                         | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Exploring the Use of Control Packets in LoRa Medium Access: A Scalability Analysis. , 2020, , .                                                 |     | 3         |
| 20 | Edge Virtualization in Multihomed Vehicular Networks. , 2020, , .                                                                               |     | 1         |
| 21 | When Backscatter Communication Meets Vehicular Networks: Boosting Crosswalk Awareness. IEEE Access, 2020, 8, 34507-34521.                       | 2.6 | 14        |
| 22 | MIGRATE: Mobile Device Virtualisation Through State Transfer. IEEE Access, 2020, 8, 25848-25862.                                                | 2.6 | 20        |
| 23 | Evaluation of Content Dissemination Strategies in Urban Vehicular Networks. Information (Switzerland), 2020, 11, 163.                           | 1.7 | 4         |
| 24 | Exploring Cloud Virtualization over Vehicular Networks with Mobility Support. , 2020, , 223-258.                                                |     | 0         |
| 25 | EmuCD: An Emulator for Content Dissemination Protocols in Vehicular Networks. Future Internet, 2020, 12, 234.                                   | 2.4 | 2         |
| 26 | Passive Gateway Election Mechanisms for Swarms of Drones in Aquatic Sensing Environments. , 2020, ,                                             |     | 1         |
| 27 | Complementing Vehicular Connectivity Coverage through Cellular Networks. , 2020, , .                                                            |     | 3         |
| 28 | QoE of Video Streaming in Multihomed Vehicular Networks. , 2019, , .                                                                            |     | 3         |
| 29 | On the Real Capacity of LoRa Networks: The Impact of Non-Destructive Communications. IEEE Communications Letters, 2019, 23, 2437-2441.          | 2.5 | 38        |
| 30 | 5GinFIRE: An end-to-end open5G vertical network function ecosystem. Ad Hoc Networks, 2019, 93, 101895.                                          | 3.4 | 16        |
| 31 | On the performance of social-based and location-aware forwarding strategies in urban vehicular networks. Ad Hoc Networks, 2019, 93, 101925.     | 3.4 | 4         |
| 32 | Real-time Video Transmission in Multihomed Vehicular Networks. , 2019, , .                                                                      |     | 3         |
| 33 | A Platform of Unmanned Surface Vehicle Swarms for Real Time Monitoring in Aquaculture<br>Environments. Sensors, 2019, 19, 4695.                 | 2.1 | 11        |
| 34 | The impact of ECDSA in a VANET routing service: Insights from real data traces. Ad Hoc Networks, 2019, 90, 101747.                              | 3.4 | 4         |
| 35 | Assessing the reliability of fog computing for smart mobility applications in VANETs. Future<br>Generation Computer Systems, 2019, 94, 317-332. | 4.9 | 79        |
| 36 | Self-adaptive Team of Aquatic Drones with a Communication Network for Aquaculture. Lecture Notes in Computer Science, 2019, , 569-580.          | 1.0 | 3         |

MIGUEL LUÃS

| #  | Article                                                                                                                                                             | IF  | Citations |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Multi-technology vs Single-technology Architecture for Network Coding in VANETs. , 2018, , .                                                                        |     | 1         |
| 38 | An Aquatic Mobile Sensing USV Swarm with a Link Quality-Based Delay Tolerant Network. Sensors, 2018, 18, 3440.                                                      | 2.1 | 7         |
| 39 | On the Analysis of Content Dissemination through Real Vehicular Boards. , 2018, , .                                                                                 |     | 1         |
| 40 | Forwarding Strategies for Future Mobile Smart City Networks. , 2018, , .                                                                                            |     | 3         |
| 41 | Vehicle-to-Vehicle Real-Time Video Transmission through IEEE 802.11p for Assisted-Driving. , 2018, , .                                                              |     | 11        |
| 42 | A Multi-Technology Communication Platform for Urban Mobile Sensing. Sensors, 2018, 18, 1184.                                                                        | 2.1 | 17        |
| 43 | XOR-Based Routing Protocols in Vehicular Ad Hoc Networks: How Well Do They Perform?. Wireless Personal Communications, 2017, 95, 1333-1357.                         | 1.8 | Ο         |
| 44 | RF-spectrum opportunities for cognitive radio networks operating over GSM channels. , 2017, , .                                                                     |     | 3         |
| 45 | A Multi-Technology Opportunistic Platform for Environmental Data Gathering on Smart Cities. , 2017, ,                                                               |     | 11        |
| 46 | Multi-Technology Data Collection: Short and Long Range Communications. , 2017, , .                                                                                  |     | 5         |
| 47 | Data Collection from Smart-City Sensors through Large-Scale Urban Vehicular Networks. , 2017, , .                                                                   |     | 8         |
| 48 | A Drone-Quality Delay Tolerant Routing Approach for Aquatic Drones Scenarios. , 2017, , .                                                                           |     | 5         |
| 49 | RF-Spectrum Opportunities for Cognitive Radio Networks Operating Over GSM Channels. IEEE Transactions on Cognitive Communications and Networking, 2017, 3, 731-739. | 4.9 | 17        |
| 50 | Characterization of the Opportunistic Service Time in Cognitive Radio Networks. IEEE Transactions on Cognitive Communications and Networking, 2016, 2, 288-300.     | 4.9 | 10        |
| 51 | A Novel Reservation-based MAC Scheme for Distributed Cognitive Radio Networks. IEEE Transactions on Vehicular Technology, 2016, , 1-1.                              | 3.9 | 5         |
| 52 | MyopicMAC: A Throughput-Optimal Random Access Scheme for Distributed Wireless Networks.<br>Wireless Personal Communications, 2016, 86, 1693-1715.                   | 1.8 | 2         |
| 53 | A double-stage reservation-based MAC scheme for distributed cognitive radio networks. , 2015, , .                                                                   |     | 0         |
| 54 | A non-preemptive mac protocol for multi-channel cognitive radio networks. , 2015, , .                                                                               |     | 1         |

MIGUEL LUÃS

| #  | Article                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Performance of a cognitive p-persistent slotted Aloha protocol. , 2015, , .                                                                                      |     | 0         |
| 56 | On the performance of decentralized CR MAC protocols under heterogeneous channel sensing conditions. , 2015, , .                                                 |     | 1         |
| 57 | Detection of licensed users' activity in a random access ultra wideband cognitive system. , 2014, , .                                                            |     | 3         |
| 58 | Practical Assessment of Energy-Based Sensing through Software Defined Radio Devices. IFIP Advances in Information and Communication Technology, 2014, , 525-532. | 0.5 | 0         |
| 59 | Towards a Realistic Primary Users' Behavior in Single Transceiver Cognitive Networks. IEEE<br>Communications Letters, 2013, 17, 309-312.                         | 2.5 | 15        |
| 60 | Improving path duration in high mobility vehicular ad hoc networks. Ad Hoc Networks, 2013, 11, 89-103.                                                           | 3.4 | 26        |
| 61 | Channel Availability Assessment for Cognitive Radios. IFIP Advances in Information and Communication Technology, 2013, , 495-504.                                | 0.5 | 2         |
| 62 | The impact of transmission errors in MAC schemes for distributed wireless networks. , 2012, , .                                                                  |     | 1         |
| 63 | Energy sensing parameterization criteria for cognitive radios. , 2012, , .                                                                                       |     | 6         |
| 64 | Towards Reliable Broadcast in ad hoc Networks. IEEE Communications Letters, 2012, 16, 314-317.                                                                   | 2.5 | 13        |
| 65 | Interference Distribution of a CDMA Cognitive Radio Ad Hoc Network. International Federation for Information Processing, 2012, , 493-502.                        | 0.4 | 0         |
| 66 | A Reliable Broadcast and Unicast MAC Protocol for Ad Hoc Networks. , 2011, , .                                                                                   |     | 0         |
| 67 | Analysis of heuristic-based MAC protocols for ad hoc networks. , 2011, , .                                                                                       |     | 1         |
| 68 | Maximizing throughput-fairness tradeoff in MAC for ad hoc networks. , 2011, , .                                                                                  |     | 2         |
| 69 | Towards the Use of XOR-Based Routing Protocols in Vehicular Ad Hoc Networks. , 2011, , .                                                                         |     | 4         |
| 70 | Joint topology control and routing in ad hoc vehicular networks. , 2010, , .                                                                                     |     | 2         |
| 71 | The Impact of Node's Mobility on Link-Detection Based on Routing Hello Messages. , 2010, , .                                                                     |     | 20        |
|    |                                                                                                                                                                  |     |           |

| #  | Article                                                                                                                                                       | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Trading hardware with medium reservation to tackle scalability in lowâ€cost, singleâ€channel<br><scp>LoRa</scp> networks. Internet Technology Letters, 0, , . | 1.4 | 0         |