
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8850633/publications.pdf Version: 2024-02-01

RENIAMIN T DIROLL

#	Article	IF	CITATIONS
1	Transient reshaping of intraband transitions by hot electrons. Nanoscale, 2022, 14, 1340-1346.	2.8	2
2	Quantum Shells Boost the Optical Gain of Lasing Media. ACS Nano, 2022, 16, 3017-3026.	7.3	18
3	Triplet photodynamic and up-conversion luminescence in donor–acceptor dyads with slip-stacked <i>vs.</i> co-facial arrangement. Journal of Materials Chemistry C, 2022, 10, 7093-7102.	2.7	2
4	Ultrafast Dynamics of Colloidal Copper Nanorods: Intraband versus Interband Excitation. Small Science, 2022, 2, 2100103.	5.8	5
5	Gain roll-off in cadmium selenide colloidal quantum wells under intense optical excitation. Scientific Reports, 2022, 12, 8016.	1.6	7
6	Extraordinarily large permittivity modulation in zinc oxide for dynamic nanophotonics. Materials Today, 2021, 43, 27-36.	8.3	20
7	Anisotropic Transient Disordering of Colloidal, Two-Dimensional CdSe Nanoplatelets upon Optical Excitation. Nano Letters, 2021, 21, 1288-1294.	4.5	8
8	Controlling All-optical Switching Speeds in an Epsilon-Near-Zero Enhanced Metasurface. , 2021, , .		0
9	Insights into the extraction of photogenerated holes from CdSe/CdS nanorods for oxidative organic catalysis. Journal of Materials Chemistry A, 2021, 9, 12690-12699.	5.2	8
10	Colloidal quantum dot lasers. Nature Reviews Materials, 2021, 6, 382-401.	23.3	196
11	Surface Normal Lasing from CdSe Nanoplatelets Coupled to Aluminum Plasmonic Nanoparticle Lattices. Journal of Physical Chemistry C, 2021, 125, 19874-19879.	1.5	12
12	Photothermal behaviour of titanium nitride nanoparticles evaluated by transient X-ray diffraction. Nanoscale, 2021, 13, 2658-2664.	2.8	15
13	Distinguishing Electron and Hole Dynamics in Functionalized CdSe/CdS Core/Shell Quantum Dots Using Complementary Ultrafast Spectroscopies and Kinetic Modeling. Journal of Physical Chemistry C, 2021, 125, 31-41.	1.5	10
14	Broadband, Highâ€5peed, and Largeâ€Amplitude Dynamic Optical Switching with Yttriumâ€Doped Cadmium Oxide. Advanced Functional Materials, 2020, 30, 1908377.	7.8	38
15	Morphological Control of Chromophore Spin State in Zinc Porphyrin–Peptide Assemblies. Journal of the American Chemical Society, 2020, 142, 233-241.	6.6	14
16	Broadband Ultrafast Dynamics of Refractory Metals: TiN and ZrN. Advanced Optical Materials, 2020, 8, 2000652.	3.6	45
17	Area and thickness dependence of Auger recombination in nanoplatelets. Journal of Chemical Physics, 2020, 153, 054104.	1.2	25
18	Nanoscale Spatial Distribution of Supported Nanoparticles Controls Activity and Stability in Powder Catalysts for CO Oxidation and Photocatalytic H ₂ Evolution. Journal of the American Chemical Society, 2020, 142, 14481-14494.	6.6	25

#	Article	IF	CITATIONS
19	Low-threshold laser medium utilizing semiconductor nanoshell quantum dots. Nanoscale, 2020, 12, 17426-17436.	2.8	9
20	Circularly Polarized Optical Stark Effect in CdSe Colloidal Quantum Wells. Nano Letters, 2020, 20, 7889-7895.	4.5	11
21	Intersubband Relaxation in CdSe Colloidal Quantum Wells. ACS Nano, 2020, 14, 12082-12090.	7.3	7
22	Interplay between Energy and Charge Transfers in a Polyaromatic Triplet Donor–Acceptor Dyad. Journal of Physical Chemistry C, 2020, 124, 12205-12212.	1.5	11
23	Ligand-Dependent Tuning of Interband and Intersubband Transitions of Colloidal CdSe Nanoplatelets. Chemistry of Materials, 2020, 32, 5916-5923.	3.2	24
24	A Nobleâ€Transition Alloy Excels at Hotâ€Carrier Generation in the Near Infrared. Advanced Materials, 2020, 32, e1906478.	11.1	11
25	Colloidal quantum wells for optoelectronic devices. Journal of Materials Chemistry C, 2020, 8, 10628-10640.	2.7	30
26	Heat-driven acoustic phonons in lamellar nanoplatelet assemblies. Nanoscale, 2020, 12, 9661-9668.	2.8	5
27	Extraordinary Permittivity Modulation in Zinc Oxide for Ultrafast Dynamic Nanophotonics. , 2020, , .		0
28	Energy Transfer Induced by Dye Encapsulation in a Hybrid Nanoparticleâ€Purple Membrane Reversible Assembly. Advanced Functional Materials, 2019, 29, 1904899.	7.8	8
29	Colloidal Atomic Layer Deposition with Stationary Reactant Phases Enables Precise Synthesis of "Digital―Il–VI Nano-heterostructures with Exquisite Control of Confinement and Strain. Journal of the American Chemical Society, 2019, 141, 13487-13496.	6.6	58
30	Intraband Cooling in Allâ€Inorganic and Hybrid Organic–Inorganic Perovskite Nanocrystals. Advanced Functional Materials, 2019, 29, 1901725.	7.8	42
31	Block-Co-polymer-Assisted Synthesis of All Inorganic Highly Porous Heterostructures with Highly Accessible Thermally Stable Functional Centers. ACS Applied Materials & Interfaces, 2019, 11, 30154-30162.	4.0	22
32	Spectroscopic Comparison of Thermal Transport at Organic–Inorganic and Organic-Hybrid Interfaces Using CsPbBr ₃ and FAPbBr ₃ (FA = Formamidinium) Perovskite Nanocrystals. Nano Letters, 2019, 19, 8155-8160.	4.5	4
33	Temperature-Dependent Intraband Relaxation of Hybrid Perovskites. Journal of Physical Chemistry Letters, 2019, 10, 5623-5628.	2.1	19
34	Polarized near-infrared intersubband absorptions in CdSe colloidal quantum wells. Nature Communications, 2019, 10, 4511.	5.8	34
35	Photoinduced, reversible phase transitions in all-inorganic perovskite nanocrystals. Nature Communications, 2019, 10, 504.	5.8	121
36	Infrared-pump electronic-probe of methylammonium lead iodide reveals electronically decoupled organic and inorganic sublattices. Nature Communications, 2019, 10, 482.	5.8	25

#	Article	IF	CITATIONS
37	Determination of the In-Plane Exciton Radius in 2D CdSe Nanoplatelets <i>via</i> Magneto-optical Spectroscopy. ACS Nano, 2019, 13, 8589-8596.	7.3	35
38	Optical and Physical Probing of Thermal Processes in Semiconductor and Plasmonic Nanocrystals. Annual Review of Physical Chemistry, 2019, 70, 353-377.	4.8	13
39	Shape-Selective Optical Transformations of CdSe Nanoplatelets Driven by Halide Ion Ligand Exchange. Chemistry of Materials, 2019, 31, 3556-3563.	3.2	31
40	Thermal Excitation Control over Photon Emission Rate of CdSe Nanocrystals. Nano Letters, 2019, 19, 2322-2328.	4.5	2
41	Synthesis of Type I PbSe/CdSe Dot-on-Plate Heterostructures with Near-Infrared Emission. Journal of the American Chemical Society, 2019, 141, 5092-5096.	6.6	25
42	Microenvironment control of porphyrin binding, organization, and function in peptide nanofiber assemblies. Nanoscale, 2019, 11, 5412-5421.	2.8	6
43	Artificial inflation of apparent photocatalytic activity induced by catalyst-mass-normalization and a method to fairly compare heterojunction systems. Energy and Environmental Science, 2019, 12, 1657-1667.	15.6	23
44	Heating and cooling of ligand-coated colloidal nanocrystals in solid films and solvent matrices. Nanoscale, 2019, 11, 8204-8209.	2.8	6
45	Effect of the Micelle Opening in Self-assembled Amphiphilic Block Co-polymer Films on the Infiltration of Inorganic Precursors. Langmuir, 2019, 35, 796-803.	1.6	16
46	Emission Statistics and Optical Transition Dipoles of Semiconductor Nanoplatelets. , 2019, , .		0
47	Elevated Temperature Photophysical Properties and Morphological Stability of CdSe and CdSe/CdS Nanoplatelets. Journal of Physical Chemistry Letters, 2018, 9, 286-293.	2.1	27
48	Unique Optical Properties of Methylammonium Lead Iodide Nanocrystals Below the Bulk Tetragonal-Orthorhombic Phase Transition. Nano Letters, 2018, 18, 846-852.	4.5	38
49	Low-Loss Near-Infrared Hyperbolic Metamaterials with Epitaxial ITO-In ₂ O ₃ Multilayers. ACS Photonics, 2018, 5, 2000-2007.	3.2	14
50	Morphological Dependence of the Thermal and Photochemical Reactions of Acetaldehyde on Anatase TiO2 Nanocrystals. Topics in Catalysis, 2018, 61, 365-378.	1.3	5
51	Heat Transfer at Hybrid Interfaces: Interfacial Ligand-to-Nanocrystal Heating Monitored with Infrared Pump, Electronic Probe Spectroscopy. Nano Letters, 2018, 18, 7863-7869.	4.5	18
52	Semiconductor Nanoplatelet Excimers. Nano Letters, 2018, 18, 6948-6953.	4.5	46
53	Direct Synthesis of Six-Monolayer (1.9 nm) Thick Zinc-Blende CdSe Nanoplatelets Emitting at 585 nm. Chemistry of Materials, 2018, 30, 6957-6960.	3.2	77
54	Accessibility of the pores in highly porous alumina films synthesized via sequential infiltration synthesis. Nanotechnology, 2018, 29, 495703.	1.3	19

#	Article	IF	CITATIONS
55	Optical Signatures of Transiently Disordered Semiconductor Nanocrystals. ACS Nano, 2018, 12, 10008-10015.	7.3	9
56	Hyperbolic Dispersion Arising from Anisotropic Excitons in Two-Dimensional Perovskites. Physical Review Letters, 2018, 121, 127401.	2.9	51
57	Lowâ€Temperature Absorption, Photoluminescence, and Lifetime of CsPbX ₃ (X = Cl, Br, I) Nanocrystals. Advanced Functional Materials, 2018, 28, 1800945.	7.8	186
58	Material Dimensionality Effects on Electron Transfer Rates Between CsPbBr ₃ and CdSe Nanoparticles. Nano Letters, 2018, 18, 4771-4776.	4.5	49
59	Anisotropic Photoluminescence from Isotropic Optical Transition Dipoles in Semiconductor Nanoplatelets. Nano Letters, 2018, 18, 4647-4652.	4.5	38
60	Slow thermal equilibration in methylammonium lead iodide revealed by transient mid-infrared spectroscopy. Nature Communications, 2018, 9, 2792.	5.8	25
61	Violet-to-Blue Gain and Lasing from Colloidal CdS Nanoplatelets: Low-Threshold Stimulated Emission Despite Low Photoluminescence Quantum Yield. ACS Photonics, 2017, 4, 576-583.	3.2	74
62	Thermal and Photochemical Reactions of Methanol, Acetaldehyde, and Acetic Acid on Brookite TiO ₂ Nanorods. Journal of Physical Chemistry C, 2017, 121, 11488-11498.	1.5	17
63	Angular measurements of the dynein ring reveal a stepping mechanism dependent on a flexible stalk. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E4564-E4573.	3.3	35
64	Highâ€īemperature Photoluminescence of CsPbX ₃ (X = Cl, Br, I) Nanocrystals. Advanced Functional Materials, 2017, 27, 1606750.	7.8	242
65	Conformal Coating of a Phase Change Material on Ordered Plasmonic Nanorod Arrays for Broadband All-Optical Switching. ACS Nano, 2017, 11, 693-701.	7.3	55
66	Anisotropic Cracking of Nanocrystal Superlattices. Nano Letters, 2017, 17, 6501-6506.	4.5	18
67	Ultrafast Silicon Photonics with Visible to Mid-Infrared Pumping of Silicon Nanocrystals. Nano Letters, 2017, 17, 6409-6414.	4.5	10
68	Transient Melting and Recrystallization of Semiconductor Nanocrystals Under Multiple Electron–Hole Pair Excitation. Nano Letters, 2017, 17, 5314-5320.	4.5	23
69	High-temperature crystallization of nanocrystals into three-dimensional superlattices. Nature, 2017, 548, 197-201.	13.7	101
70	Size-Dependent Biexciton Quantum Yields and Carrier Dynamics of Quasi-Two-Dimensional Core/Shell Nanoplatelets. ACS Nano, 2017, 11, 9119-9127.	7.3	66
71	Rapid Synthesis of Nanoporous Conformal Coatings via Plasma-Enhanced Sequential Infiltration of a Polymer Template. ACS Omega, 2017, 2, 7812-7819.	1.6	23
72	Slow Organicâ€toâ€Inorganic Subâ€Lattice Thermalization in Methylammonium Lead Halide Perovskites Observed by Ultrafast Photoluminescence. Advanced Energy Materials, 2016, 6, 1600422.	10.2	32

#	Article	IF	CITATIONS
73	Large optical nonlinearity of ITO nanorods for sub-picosecond all-optical modulation of the full-visible spectrum. Nature Communications, 2016, 7, 12892.	5.8	88
74	Nanocrystal Size-Dependent Efficiency of Quantum Dot Sensitized Solar Cells in the Strongly Coupled CdSe Nanocrystals/TiO ₂ System. ACS Applied Materials & Interfaces, 2016, 8, 14692-14700.	4.0	66
75	Exploiting the colloidal nanocrystal library to construct electronic devices. Science, 2016, 352, 205-208.	6.0	234
76	Statistical Description of CdSe/CdS Dot-in-Rod Heterostructures Using Scanning Transmission Electron Microscopy. Chemistry of Materials, 2016, 28, 3345-3351.	3.2	17
77	Advanced Architecture for Colloidal PbS Quantum Dot Solar Cells Exploiting a CdSe Quantum Dot Buffer Layer. ACS Nano, 2016, 10, 9267-9273.	7.3	69
78	Polycatenar Ligand Control of the Synthesis and Self-Assembly of Colloidal Nanocrystals. Journal of the American Chemical Society, 2016, 138, 10508-10515.	6.6	22
79	Shape-dependence of the thermal and photochemical reactions of methanol on nanocrystalline anatase TiO2. Surface Science, 2016, 654, 1-7.	0.8	24
80	Facile, Economic and Size-Tunable Synthesis of Metal Arsenide Nanocrystals. Chemistry of Materials, 2016, 28, 6797-6802.	3.2	40
81	Surface-Area-Dependent Electron Transfer Between Isoenergetic 2D Quantum Wells and a Molecular Acceptor. Journal of the American Chemical Society, 2016, 138, 11109-11112.	6.6	35
82	Large Transient Optical Modulation of Epsilon-Near-Zero Colloidal Nanocrystals. ACS Nano, 2016, 10, 10099-10105.	7.3	44
83	Ultrafast Photoluminescence from the Core and the Shell in CdSe/CdS Dotâ€inâ€Rod Heterostructures. ChemPhysChem, 2016, 17, 759-765.	1.0	22
84	NeutrAvidin Functionalization of CdSe/CdS Quantum Nanorods and Quantification of Biotin Binding Sites using Biotin-4-Fluorescein Fluorescence Quenching. Bioconjugate Chemistry, 2016, 27, 562-568.	1.8	15
85	Synthesis and Size-Selective Precipitation of Monodisperse Nonstoichiometric M _{<i>x</i>} Fe _{3–<i>x</i>} O ₄ (M = Mn, Co) Nanocrystals and Their DC and AC Magnetic Properties. Chemistry of Materials, 2016, 28, 480-489.	3.2	42
86	Coherent Acoustic Phonons in Colloidal Semiconductor Nanocrystal Superlattices. ACS Nano, 2016, 10, 1163-1169.	7.3	52
87	Synergistic Oxygen Evolving Activity of a TiO ₂ -Rich Reconstructed SrTiO ₃ (001) Surface. Journal of the American Chemical Society, 2015, 137, 2939-2947.	6.6	58
88	Ultrafast Electron Trapping in Ligand-Exchanged Quantum Dot Assemblies. ACS Nano, 2015, 9, 1440-1447.	7.3	15
89	Lifetime, Mobility, and Diffusion of Photoexcited Carriers in Ligand-Exchanged Lead Selenide Nanocrystal Films Measured by Time-Resolved Terahertz Spectroscopy. ACS Nano, 2015, 9, 1820-1828.	7.3	61
90	Selective p- and n-Doping of Colloidal PbSe Nanowires To Construct Electronic and Optoelectronic Devices. ACS Nano, 2015, 9, 7536-7544.	7.3	32

#	Article	IF	CITATIONS
91	Binary and Ternary Superlattices Self-Assembled from Colloidal Nanodisks and Nanorods. Journal of the American Chemical Society, 2015, 137, 6662-6669.	6.6	110
92	Efficient Removal of Organic Ligands from Supported Nanocrystals by Fast Thermal Annealing Enables Catalytic Studies on Well-Defined Active Phases. Journal of the American Chemical Society, 2015, 137, 6906-6911.	6.6	208
93	Characterization of Shape and Monodispersity of Anisotropic Nanocrystals through Atomistic X-ray Scattering Simulation. Chemistry of Materials, 2015, 27, 2502-2506.	3.2	26
94	Deposition of Waferâ€Scale Singleâ€Component and Binary Nanocrystal Superlattice Thin Films Via Dipâ€Coating. Advanced Materials, 2015, 27, 2846-2851.	11.1	52
95	Smectic Nanorod Superlattices Assembled on Liquid Subphases: Structure, Orientation, Defects, and Optical Polarization. Chemistry of Materials, 2015, 27, 2998-3008.	3.2	69
96	Flexible, High-Speed CdSe Nanocrystal Integrated Circuits. Nano Letters, 2015, 15, 7155-7160.	4.5	52
97	Uniform Bimetallic Nanocrystals by High-Temperature Seed-Mediated Colloidal Synthesis and Their Catalytic Properties for Semiconducting Nanowire Growth. Chemistry of Materials, 2015, 27, 5833-5838.	3.2	27
98	Dendron-Mediated Engineering of Interparticle Separation and Self-Assembly in Dendronized Gold Nanoparticles Superlattices. Journal of the American Chemical Society, 2015, 137, 10728-10734.	6.6	51
99	Spectrally-Resolved Dielectric Functions of Solution-Cast Quantum Dot Thin Films. Chemistry of Materials, 2015, 27, 6463-6469.	3.2	31
100	Substitutional doping in nanocrystal superlattices. Nature, 2015, 524, 450-453.	13.7	174
101	Quantifying "Softness―of Organic Coatings on Gold Nanoparticles Using Correlated Small-Angle X-ray and Neutron Scattering. Nano Letters, 2015, 15, 8008-8012.	4.5	47
102	X-ray Mapping of Nanoparticle Superlattice Thin Films. ACS Nano, 2014, 8, 12843-12850.	7.3	19
103	Air-Stable, Nanostructured Electronic and Plasmonic Materials from Solution-Processable, Silver Nanocrystal Building Blocks. ACS Nano, 2014, 8, 2746-2754.	7.3	40
104	Tunable Optical Anisotropy of Seeded CdSe/CdS Nanorods. Journal of Physical Chemistry Letters, 2014, 5, 85-91.	2.1	49
105	Tailoring photocatalytic nanostructures for sustainable hydrogen production. Nanoscale, 2014, 6, 97-105.	2.8	30
106	Effects of Post-Synthesis Processing on CdSe Nanocrystals and Their Solids: Correlation between Surface Chemistry and Optoelectronic Properties. Journal of Physical Chemistry C, 2014, 118, 27097-27105.	1.5	33
107	Enhanced Energy Transfer in Quasiâ€Quaternary Nanocrystal Superlattices. Advanced Materials, 2014, 26, 2419-2423.	11.1	26
108	Bulk Metallic Glass-like Scattering Signal in Small Metallic Nanoparticles. ACS Nano, 2014, 8, 6163-6170.	7.3	26

#	Article	IF	CITATIONS
109	Synthesis of N-Type Plasmonic Oxide Nanocrystals and the Optical and Electrical Characterization of their Transparent Conducting Films. Chemistry of Materials, 2014, 26, 4579-4588.	3.2	46
110	Low-Frequency (1/ <i>f</i>) Noise in Nanocrystal Field-Effect Transistors. ACS Nano, 2014, 8, 9664-9672.	7.3	55
111	Gate-Induced Carrier Delocalization in Quantum Dot Field Effect Transistors. Nano Letters, 2014, 14, 5948-5952.	4.5	25
112	Designing High-Performance PbS and PbSe Nanocrystal Electronic Devices through Stepwise, Post-Synthesis, Colloidal Atomic Layer Deposition. Nano Letters, 2014, 14, 1559-1566.	4.5	176
113	Expanding the Spectral Tunability of Plasmonic Resonances in Doped Metal-Oxide Nanocrystals through Cooperative Cation–Anion Codoping. Journal of the American Chemical Society, 2014, 136, 11680-11686.	6.6	119
114	High-Temperature Photoluminescence of CdSe/CdS Core/Shell Nanoheterostructures. ACS Nano, 2014, 8, 6466-6474.	7.3	71
115	Seeded Growth of Metal-Doped Plasmonic Oxide Heterodimer Nanocrystals and Their Chemical Transformation. Journal of the American Chemical Society, 2014, 136, 5106-5115.	6.6	65
116	Interpreting the Energy-Dependent Anisotropy of Colloidal Nanorods Using Ensemble and Single-Particle Spectroscopy. Journal of Physical Chemistry C, 2013, 117, 23928-23937.	1.5	28
117	Shape Alloys of Nanorods and Nanospheres from Self-Assembly. Nano Letters, 2013, 13, 4980-4988.	4.5	104
118	Solution-Based Stoichiometric Control over Charge Transport in Nanocrystalline CdSe Devices. ACS Nano, 2013, 7, 8760-8770.	7.3	43
119	Tunable Plasmonic Coupling in Self-Assembled Binary Nanocrystal Superlattices Studied by Correlated Optical Microspectrophotometry and Electron Microscopy. Nano Letters, 2013, 13, 1291-1297.	4.5	125
120	Chemically Tailored Dielectric-to-Metal Transition for the Design of Metamaterials from Nanoimprinted Colloidal Nanocrystals. Nano Letters, 2013, 13, 350-357.	4.5	87
121	Bandlike Transport in Strongly Coupled and Doped Quantum Dot Solids: A Route to High-Performance Thin-Film Electronics. Nano Letters, 2012, 12, 2631-2638.	4.5	340
122	Thiocyanate-Capped Nanocrystal Colloids: Vibrational Reporter of Surface Chemistry and Solution-Based Route to Enhanced Coupling in Nanocrystal Solids. Journal of the American Chemical Society, 2011, 133, 15753-15761.	6.6	309
123	Single-Atom Metal Oxide Sites as Traps for Charge Separation in the Zirconium-Based Metal–Organic Framework NDC–NU-1000. Energy & Fuels, 0, , .	2.5	8
124	Time-resolved photoluminescence studies of perovskite chalcogenides. Faraday Discussions, 0, 239, 146-159.	1.6	8