
MarÃ-a Mittelbrunn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8850552/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nicotinamide adenine dinucleotide metabolism in the immune response, autoimmunity and inflammageing. British Journal of Pharmacology, 2022, 179, 1839-1856.	2.7	26
2	The role of T cells in age-related diseases. Nature Reviews Immunology, 2022, 22, 97-111.	10.6	80
3	Metabolic Profile of Adaptive Immune Cells. , 2022, , 115-132.		0
4	Galectin-1 prevents pathological vascular remodeling in atherosclerosis and abdominal aortic aneurysm. Science Advances, 2022, 8, eabm7322.	4.7	18
5	Rewiring Vascular Metabolism Prevents Sudden Death due to Aortic Ruptures—Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 2022, 42, 462-469.	1.1	8
6	Mitochondrial dysfunction defines TÂcell exhaustion. Cell Metabolism, 2021, 33, 470-472.	7.2	14
7	Hallmarks of T cell aging. Nature Immunology, 2021, 22, 687-698.	7.0	217
8	Extracellular Tuning of Mitochondrial Respiration Leads to Aortic Aneurysm. Circulation, 2021, 143, 2091-2109.	1.6	54
9	TFAM-deficient mouse skin fibroblasts – an ex vivo model of mitochondrial dysfunction. DMM Disease Models and Mechanisms, 2021, 14, .	1.2	3
10	Control of Inflammation by Calorie Restriction Mimetics: On the Crossroad of Autophagy and Mitochondria. Cells, 2020, 9, 82.	1.8	62
11	T cells with dysfunctional mitochondria induce multimorbidity and premature senescence. Science, 2020, 368, 1371-1376.	6.0	286
12	Glycolysis – a key player in the inflammatory response. FEBS Journal, 2020, 287, 3350-3369.	2.2	250
13	578 Immunometabolic imbalance fosters skin ageing. Journal of Investigative Dermatology, 2019, 139, S314.	0.3	0
14	The Role of Extracellular Vesicles in Cutaneous Remodeling and Hair Follicle Dynamics. International Journal of Molecular Sciences, 2019, 20, 2758.	1.8	48
15	Mitochondrial activity in T cells. Mitochondrion, 2018, 41, 51-57.	1.6	107
16	The microRNA-29/PGC1α regulatory axis is critical for metabolic control of cardiac function. PLoS Biology, 2018, 16, e2006247.	2.6	42
17	Priming of dendritic cells by DNA-containing extracellular vesicles from activated T cells through antigen-driven contacts. Nature Communications, 2018, 9, 2658.	5.8	242

18 Integrin Alpha 4 (Itga 4). , 2018, , 2630-2634.

MarÃa Mittelbrunn

#	Article	IF	CITATIONS
19	Obstacles and opportunities in the functional analysis of extracellular vesicle RNA – an ISEV position paper. Journal of Extracellular Vesicles, 2017, 6, 1286095.	5.5	561
20	miRNA profiling during antigen-dependent T cell activation: A role for miR-132-3p. Scientific Reports, 2017, 7, 3508.	1.6	21
21	3′ Uridylation controls mature microRNA turnover during CD4 T-cell activation. Rna, 2017, 23, 882-891.	1.6	47
22	Role of exosomes in the protection of cellular homeostasis. Cell Adhesion and Migration, 2017, 11, 127-134.	1.1	134
23	Interorganelle Communication between Mitochondria and the Endolysosomal System. Frontiers in Cell and Developmental Biology, 2017, 5, 95.	1.8	88
24	Exosomes in the Preservation of Cellular Homeostasis. Oxidative Stress in Applied Basic Research and Clinical Practice, 2016, , 17-45.	0.4	0
25	ISGylation controls exosome secretion by promoting lysosomal degradation of MVB proteins. Nature Communications, 2016, 7, 13588.	5.8	334
26	Loss of the proteostasis factor AIRAPL causes myeloid transformation by deregulating IGF-1 signaling. Nature Medicine, 2016, 22, 91-96.	15.2	37
27	Biological properties of extracellular vesicles and their physiological functions. Journal of Extracellular Vesicles, 2015, 4, 27066.	5.5	3,973
28	Editorial: Novel Clinical Applications of Extracellular Vesicles. Frontiers in Immunology, 2015, 6, 381.	2.2	9
29	Organizing Polarized Delivery of Exosomes at Synapses. Traffic, 2015, 16, 327-337.	1.3	64
30	Exosome secretion by eosinophils: AÂpossible role in asthma pathogenesis. Journal of Allergy and Clinical Immunology, 2015, 135, 1603-1613.	1.5	99
31	Mitochondrial Respiration Controls Lysosomal Function during Inflammatory T Cell Responses. Cell Metabolism, 2015, 22, 485-498.	7.2	239
32	Exosomes and Autophagy: Coordinated Mechanisms for the Maintenance of Cellular Fitness. Frontiers in Immunology, 2014, 5, 403.	2.2	350
33	Sorting it out: Regulation of exosome loading. Seminars in Cancer Biology, 2014, 28, 3-13.	4.3	592
34	ROS-Triggered Phosphorylation of Complex II by Fgr Kinase Regulates Cellular Adaptation to Fuel Use. Cell Metabolism, 2014, 19, 1020-1033.	7.2	101
35	Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nature Communications, 2013, 4, 2980.	5.8	1,522
36	Transfer of extracellular vesicles during immune cell ell interactions. Immunological Reviews, 2013, 251, 125-142.	2.8	271

MarÃa Mittelbrunn

#	Article	IF	CITATIONS
37	Analysis of MicroRNA and Protein Transfer by Exosomes During an Immune Synapse. Methods in Molecular Biology, 2013, 1024, 41-51.	0.4	51
38	First Symposium of "Grupo Español de Investigación en VesÃculas Extracelulares (GEIVEX)â€, Segovia, 8–9ÂNovember 2012. Journal of Extracellular Vesicles, 2013, 2, 20256.	5.5	1
39	Association of syntenin-1 with M-RIP polarizes Rac-1 activation during chemotaxis and immune interactions. Journal of Cell Science, 2012, 125, 1235-1246.	1.2	33
40	Intercellular communication: diverse structures for exchange of genetic information. Nature Reviews Molecular Cell Biology, 2012, 13, 328-335.	16.1	551
41	Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nature Communications, 2011, 2, 282.	5.8	1,525
42	Endosomal clathrin drives actin accumulation at the immunological synapse. Journal of Cell Science, 2011, 124, 820-830.	1.2	80
43	F-actin-binding protein drebrin regulates CXCR4 recruitment to the immune synapse. Journal of Cell Science, 2010, 123, 1160-1170.	1.2	54
44	Identification of Genes Responsive to Solar Simulated UV Radiation in Human Monocyte-Derived Dendritic Cells. PLoS ONE, 2009, 4, e6735.	1.1	17
45	Imaging of plasmacytoid dendritic cell interactions with T cells. Blood, 2009, 113, 75-84.	0.6	45
46	Activation Outcomes Induced in NaÃ⁻ve CD8 T-Cells by Macrophages Primed via "Phagocytic―and Nonphagocytic Pathways. Molecular Biology of the Cell, 2008, 19, 701-710.	0.9	23
47	Antigen-induced clustering of surface CD38 and recruitment of intracellular CD38 to the immunologic synapse. Blood, 2008, 111, 3653-3664.	0.6	74
48	MTOC translocation modulates IS formation and controls sustained T cell signaling. Journal of Cell Biology, 2008, 182, 951-962.	2.3	165
49	Basal shuttle of NF-κB/IκBα in resting T lymphocytes regulates HIV-1 LTR dependent expression. Retrovirology, 2007, 4, 56.	0.9	34
50	Functional insights on the polarized redistribution of leukocyte integrins and their ligands during leukocyte migration and immune interactions. Immunological Reviews, 2007, 218, 147-164.	2.8	98
51	Lymphocyte Chemotaxis Is Regulated by Histone Deacetylase 6, Independently of Its Deacetylase Activity. Molecular Biology of the Cell, 2006, 17, 3435-3445.	0.9	79
52	Therapeutic anti-integrin (alpha4 and alphaL) monoclonal antibodies: two-edged swords?. Immunology, 2005, 116, 289-296.	2.0	54
53	Solar-Simulated Ultraviolet Radiation Induces Abnormal Maturation and Defective Chemotaxis of Dendritic Cells. Journal of Investigative Dermatology, 2005, 125, 334-342.	0.3	29
54	Synaptic Clusters of MHC Class II Molecules Induced on DCs by Adhesion Molecule–mediated Initial T-Cell Scanning. Molecular Biology of the Cell, 2005, 16, 3314-3322.	0.9	65

4

MarÃa Mittelbrunn

#	Article	IF	CITATIONS
55	Recruitment of Transferrin Receptor to Immunological Synapse in Response to TCR Engagement. Journal of Immunology, 2004, 172, 6709-6714.	0.4	68
56	Relevance of CD6-Mediated Interactions in T Cell Activation and Proliferation. Journal of Immunology, 2004, 173, 2262-2270.	0.4	130
57	Dynamic Redistribution of the Activating 2B4/SAP Complex at the Cytotoxic NK Cell Immune Synapse. Journal of Immunology, 2004, 173, 3640-3646.	0.4	52
58	VLA-4 integrin concentrates at the peripheral supramolecular activation complex of the immune synapse and drives T helper 1 responses. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 11058-11063.	3.3	128
59	HDAC6 Deacetylase Activity Links the Tubulin Cytoskeleton with Immune Synapse Organization. Immunity, 2004, 20, 417-428.	6.6	184
60	The Accessory Molecules CD5 and CD6 Associate on the Membrane of Lymphoid T Cells. Journal of Biological Chemistry, 2003, 278, 8564-8571.	1.6	65
61	Cutting Edge: Dynamic Redistribution of Tetraspanin CD81 at the Central Zone of the Immune Synapse in Both T Lymphocytes and APC. Journal of Immunology, 2002, 169, 6691-6695.	0.4	128
62	Regulation of microtubule-organizing center orientation and actomyosin cytoskeleton rearrangement during immune interactions. Immunological Reviews, 2002, 189, 84-97.	2.8	64
63	Regulatory role of tetraspanin CD9 in tumor–endothelial cell interaction during transendothelial invasion of melanoma cells. Blood, 2001, 98, 3717-3726.	0.6	103
64	Tetraspanins and Intercellular Interactions. Microcirculation, 2001, 8, 153-168.	1.0	41
65	Tetraspanins and Intercellular Interactions. , 2001, 8, 153.		24
66	Tetraspanins and intercellular interactions. Microcirculation, 2001, 8, 153-68.	1.0	19
67	Integrin alpha 4. The AFCS-nature Molecule Pages, 0, , .	0.2	3
68	Integrin alpha L. The AFCS-nature Molecule Pages, 0, , .	0.2	0