Ozlem Yilmaz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8850480/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Inflammasome Activation in Gingival Epithelial Cells. Methods in Molecular Biology, 2022, 2459, 149-167.	0.9	2
2	Key Elements of Gingival Epithelial Homeostasis upon Bacterial Interaction. Journal of Dental Research, 2021, 100, 333-340.	5.2	11
3	Characterization of Human Genes Modulated by Porphyromonas gingivalis Highlights the Ribosome, Hypothalamus, and Cholinergic Neurons. Frontiers in Immunology, 2021, 12, 646259.	4.8	12
4	CD73â€dependent adenosine dampens interleukinâ€1β–induced CXCL8 production in gingival fibroblasts: Association with heme oxygenaseâ€1 and adenosine monophosphate‒activated protein kinase. Journal of Periodontology, 2020, 91, 253-262.	3.4	10
5	In Situ Intraepithelial Localizations of Opportunistic Pathogens, Porphyromonas gingivalis and Filifactor alocis, in Human Gingiva. Current Research in Microbial Sciences, 2020, 1, 7-17.	2.3	17
6	Host surface ectonucleotidase-CD73 and the opportunistic pathogen, Porphyromonas gingivalis, cross-modulation underlies a new homeostatic mechanism for chronic bacterial survival in human epithelial cells. Virulence, 2020, 11, 414-429.	4.4	11
7	Possible role of <i>Porphyromonas gingivalis</i> in orodigestive cancers. Journal of Oral Microbiology, 2019, 11, 1563410.	2.7	117
8	Activation of vitamin D in the gingival epithelium and its role in gingival inflammation and alveolar bone loss. Journal of Periodontal Research, 2019, 54, 444-452.	2.7	18
9	<i>Porphyromonas gingivalis</i> traffics into endoplasmic reticulum-rich-autophagosomes for successful survival in human gingival epithelial cells. Virulence, 2018, 9, 845-859.	4.4	71
10	A novel kinase function of a nucleoside-diphosphate-kinase homologue in <i>Porphyromonas gingivalis</i> is critical in subversion of host cell apoptosis by targeting heat-shock protein 27. Cellular Microbiology, 2018, 20, e12825.	2.1	33
11	NLRX1 modulates differentially NLRP3 inflammasome activation and NF-ήB signaling during Fusobacterium nucleatum infection. Microbes and Infection, 2018, 20, 615-625.	1.9	61
12	Unfolding Role of a Danger Molecule Adenosine Signaling in Modulation of Microbial Infection and Host Cell Response. International Journal of Molecular Sciences, 2018, 19, 199.	4.1	31
13	Opportunistic Pathogen Porphyromonas gingivalis Modulates Danger Signal ATP-Mediated Antibacterial NOX2 Pathways in Primary Epithelial Cells. Frontiers in Cellular and Infection Microbiology, 2017, 7, 291.	3.9	29
14	Human Primary Epithelial Cells Acquire an Epithelial-Mesenchymal-Transition Phenotype during Long-Term Infection by the Oral Opportunistic Pathogen, Porphyromonas gingivalis. Frontiers in Cellular and Infection Microbiology, 2017, 7, 493.	3.9	81
15	<i>Fusobacterium nucleatum</i> infection of gingival epithelial cells leads to NLRP3 inflammasome-dependent secretion of IL-11² and the danger signals ASC and HMGB1. Cellular Microbiology, 2016, 18, 970-981.	2.1	118
16	Modulation of inflammasome activity by <i>Porphyromonas gingivalis</i> in periodontitis and associated systemic diseases. Journal of Oral Microbiology, 2016, 8, 30385.	2.7	79
17	Nucleoside-Diphosphate-Kinase of P. gingivalis is Secreted from Epithelial Cells In the Absence of a Leader Sequence Through a Pannexin-1 Interactome. Scientific Reports, 2016, 6, 37643.	3.3	23
18	Role of epigenetics in modulation of immune response at the junction of host–pathogen interaction and danger molecule signaling. Pathogens and Disease, 2016, 74, ftw082.	2.0	33

Ozlem Yilmaz

#	Article	IF	CITATIONS
19	In Situ Anabolic Activity of Periodontal Pathogens Porphyromonas gingivalis and Filifactor alocis in Chronic Periodontitis. Scientific Reports, 2016, 6, 33638.	3.3	25
20	The inflammasome and danger molecule signaling: at the crossroads of inflammation and pathogen persistence in the oral cavity. Periodontology 2000, 2015, 69, 83-95.	13.4	46
21	Prelude to oral microbes and chronic diseases: past, present and future. Microbes and Infection, 2015, 17, 473-483.	1.9	56
22	Porphyromonas gingivalis attenuates ATP-mediated inflammasome activation and HMGB1 release through expression of a nucleoside-diphosphate kinase. Microbes and Infection, 2015, 17, 369-377.	1.9	51
23	A new frontier: oral microbes without borders. Microbes and Infection, 2015, 17, 469-470.	1.9	1
24	Vibrio cholerae Persisted in Microcosm for 700 Days Inhibits Motility but Promotes Biofilm Formation in Nutrient-Poor Lake Water Microcosms. PLoS ONE, 2014, 9, e92883.	2.5	25
25	Looking in the <i>Porphyromonas gingivalis</i> cabinet of curiosities: the microbium, the host and cancer association. Molecular Oral Microbiology, 2014, 29, 55-66.	2.7	105
26	Danger signal adenosine via adenosine 2a receptor stimulates growth of <i><scp>P</scp>orphyromonas gingivalis</i> in primary gingival epithelial cells. Molecular Oral Microbiology, 2014, 29, 67-78.	2.7	25
27	<i>Porphyromonas gingivalis</i> -nucleoside-diphosphate-kinase inhibits ATP-induced reactive-oxygen-species via P2X ₇ receptor/NADPH-oxidase signalling and contributes to persistence. Cellular Microbiology, 2013, 15, 961-976.	2.1	86
28	P2X4 Assembles with P2X7 and Pannexin-1 in Gingival Epithelial Cells and Modulates ATP-induced Reactive Oxygen Species Production and Inflammasome Activation. PLoS ONE, 2013, 8, e70210.	2.5	135
29	Nucleoside-diphosphate-kinase: a pleiotropic effector in microbial colonization under interdisciplinary characterization. Microbes and Infection, 2012, 14, 228-237.	1.9	31
30	Genetic Transformation of an Obligate Anaerobe, P. gingivalis for FMN-Green Fluorescent Protein Expression in Studying Host-Microbe Interaction. PLoS ONE, 2011, 6, e18499.	2.5	44
31	Vitamin D-Mediated Induction of Innate Immunity in Gingival Epithelial Cells. Infection and Immunity, 2011, 79, 2250-2256.	2.2	108
32	The Role of Reactive-Oxygen-Species in Microbial Persistence and Inflammation. International Journal of Molecular Sciences, 2011, 12, 334-352.	4.1	189
33	ATP-dependent activation of an inflammasome in primary gingival epithelial cells infected by <i>Porphyromonas gingivalis</i> . Cellular Microbiology, 2010, 12, 188-198.	2.1	136
34	<i>Porphyromonas gingivalis</i> infection sequesters pro-apoptotic Bad through Akt in primary gingival epithelial cells. Molecular Oral Microbiology, 2010, 25, 89-101.	2.7	113
35	Porphyromonas gingivalisinvades human trophoblasts and inhibits proliferation by inducing G1 arrest and apoptosis. Cellular Microbiology, 2009, 11, 1517-1532.	2.1	49
36	The Oral Microbiota: Living with a Permanent Guest. DNA and Cell Biology, 2009, 28, 405-411.	1.9	340

Ozlem Yilmaz

#	Article	IF	CITATIONS
37	Inflammasomes bridge signaling between pathogen identification and the immune response. Drugs of Today, 2009, 45 Suppl B, 105-12.	1.1	26
38	P. gingivalis accelerates gingival epithelial cell progression through the cell cycle. Microbes and Infection, 2008, 10, 122-128.	1.9	156
39	ATP scavenging by the intracellular pathogen Porphyromonas gingivalis inhibits P2X ₇ -mediated host-cell apoptosis. Cellular Microbiology, 2008, 10, 863-875.	2.1	134
40	The chronicles of Porphyromonas gingivalis: the microbium, the human oral epithelium and their interplay. Microbiology (United Kingdom), 2008, 154, 2897-2903.	1.8	166
41	Intrinsic apoptotic pathways of gingival epithelial cells modulated by Porphyromonas gingivalis. Cellular Microbiology, 2007, 9, 1997-2007.	2.1	185
42	Intercellular Spreading of Porphyromonas gingivalis Infection in Primary Gingival Epithelial Cells. Infection and Immunity, 2006, 74, 703-710.	2.2	161
43	Differential protein expression by <i>Porphyromonas gingivalis</i> in response to secreted epithelial cell components. Proteomics, 2005, 5, 198-211.	2.2	58
44	Invasion by <i>Porphyromonas gingivalis</i> ., 2004, , 295-314.		1
45	Activation of the Phosphatidylinositol 3-Kinase/Akt Pathway Contributes to Survival of Primary Epithelial Cells Infected with the Periodontal Pathogen Porphyromonas gingivalis. Infection and Immunity, 2004, 72, 3743-3751.	2.2	190
46	Identification of Porphyromonas gingivalis Genes Specifically Expressed in Human Gingival Epithelial Cells by Using Differential Display Reverse Transcription-PCR. Infection and Immunity, 2004, 72, 3752-3758.	2.2	39
47	Gingival epithelial cell signalling and cytoskeletal responses to Porphyromonas gingivalis invasion. Microbiology (United Kingdom), 2003, 149, 2417-2426.	1.8	111
48	In or out: the invasiveness of oral bacteria. Periodontology 2000, 2002, 30, 61-69.	13.4	134
49	Involvement of integrins in fimbriae-mediated binding and invasion by Porphyromonas gingivalis. Cellular Microbiology, 2002, 4, 305-314.	2.1	217
50	Inhibition of epithelial cell apoptosis byPorphyromonas gingivalis. FEMS Microbiology Letters, 2001, 200, 145-149.	1.8	130
51	Association of Mitogen-Activated Protein Kinase Pathways with Gingival Epithelial Cell Responses to Porphyromonas gingivalis Infection. Infection and Immunity, 2001, 69, 6731-6737.	2.2	75
52	Inhibition of epithelial cell apoptosis by Porphyromonas gingivalis. FEMS Microbiology Letters, 2001, 200, 145-149.	1.8	3