## Walaa S Mogawer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8850241/publications.pdf

Version: 2024-02-01



MALAA S MOCAWER

| #  | Article                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Local calibration of the Hirsch model to determine the degree of blending between aged and virgin asphalt binders. Road Materials and Pavement Design, 2022, 23, 2132-2150.                                                | 2.0 | 5         |
| 2  | Recycled Polyethylene Modified Asphalt Binders and Mixtures: Performance Characteristics and Environmental Impact. Transportation Research Record, 2022, 2676, 202-224.                                                    | 1.0 | 3         |
| 3  | Performance and blending evaluation of asphalt mixtures containing reclaimed asphalt pavement.<br>Road Materials and Pavement Design, 2021, 22, 2441-2457.                                                                 | 2.0 | 24        |
| 4  | Quantification of the degree of blending in hot-mix asphalt (HMA) with reclaimed asphalt pavement<br>(RAP) using Energy Dispersive X-Ray Spectroscopy (EDX) analysis. Journal of Cleaner Production, 2021,<br>294, 126261. | 4.6 | 35        |
| 5  | Development of a coherent framework for balanced mix design and production quality control and quality acceptance. Construction and Building Materials, 2021, 287, 123020.                                                 | 3.2 | 22        |
| 6  | Variability of Reclaimed Asphalt Pavement (RAP) Properties within a State and Its Effects on RAP<br>Specifications. Transportation Research Record, 2020, 2674, 73-84.                                                     | 1.0 | 10        |
| 7  | Influence of Production Considerations on Balanced Mixture Designs. Transportation Research Record, 2018, 2672, 426-437.                                                                                                   | 1.0 | 6         |
| 8  | Effect of Binder Modification and Recycled Asphalt Pavement on the Performance of Permeable Friction Course. Transportation Research Record, 2018, 2672, 119-129.                                                          | 1.0 | 1         |
| 9  | Investigating the Performances of Plant-Produced High-Reclaimed Asphalt Pavement Content Warm<br>Mix Asphalts. Transportation Research Record, 2018, 2672, 130-142.                                                        | 1.0 | 5         |
| 10 | A Mechanical Approach to Quantify Blending of Aged Binder from Recycled Materials in New Hot Mix<br>Asphalt Mixtures. Transportation Research Record, 2018, 2672, 107-118.                                                 | 1.0 | 16        |
| 11 | Performance space diagram for the evaluation of high- and low-temperature asphalt mixture performance. Road Materials and Pavement Design, 2017, 18, 336-358.                                                              | 2.0 | 29        |
| 12 | Evaluating the mechanical properties of terminal blend tire rubber mixtures incorporating RAP.<br>Construction and Building Materials, 2017, 138, 427-433.                                                                 | 3.2 | 12        |
| 13 | Using binder and mixture space diagrams to evaluate the effect of re-refined engine oil bottoms on binders and mixtures after ageing. Road Materials and Pavement Design, 2017, 18, 154-182.                               | 2.0 | 22        |
| 14 | Evaluating Asphalt Binders Prepared with Different Processes to Meet the Same Performance Grade:<br>Use of Atomic Force Microscope. Transportation Research Record, 2017, 2632, 99-109.                                    | 1.0 | 5         |
| 15 | Effect of Silo Storage Time on the Characteristics of Virgin and Reclaimed Asphalt Pavement Mixtures.<br>Transportation Research Record, 2016, 2573, 76-85.                                                                | 1.0 | 26        |
| 16 | Using Polymer Modification and Rejuvenators to Improve the Performance of High Reclaimed Asphalt<br>Pavement Mixtures. Transportation Research Record, 2016, 2575, 10-18.                                                  | 1.0 | 31        |
| 17 | Effect of Binder Modification on the Performance of an Ultra-Thin Overlay Pavement Preservation Strategy. Transportation Research Record, 2016, 2550, 1-7.                                                                 | 1.0 | 10        |
| 18 | Performance characteristics of high reclaimed asphalt pavement containing bio-modifier. Road<br>Materials and Pavement Design, 2016, 17, 753-767.                                                                          | 2.0 | 38        |

| #  | Article                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Ageing and rejuvenators: evaluating their impact on high RAP mixtures fatigue cracking<br>characteristics using advanced mechanistic models and testing methods. Road Materials and Pavement<br>Design, 2015, 16, 1-28. | 2.0 | 54        |
| 20 | Multi-scale evaluation of the effect of rejuvenators on the performance of high RAP content mixtures. Construction and Building Materials, 2015, 101, 50-56.                                                            | 3.2 | 40        |
| 21 | Strategies for Incorporating Higher Recycled Asphalt Pavement Percentages. Transportation Research<br>Record, 2014, 2445, 83-93.                                                                                        | 1.0 | 20        |
| 22 | Effects of GTR and Treated GTR on Asphalt Binder and High-RAP Mixtures. Journal of Materials in Civil Engineering, 2014, 26, 721-727.                                                                                   | 1.3 | 21        |
| 23 | Low-temperature properties of plant-produced RAP mixtures in the Northeast. Road Materials and Pavement Design, 2014, 15, 1-27.                                                                                         | 2.0 | 34        |
| 24 | How to Construct an Asphalt Binder Master Curve and Assess the Degree of Blending between RAP and<br>Virgin Binders. Journal of Materials in Civil Engineering, 2013, 25, 1813-1821.                                    | 1.3 | 78        |
| 25 | Evaluation of Fatigue Tests for Characterizing Asphalt Binders. Journal of Materials in Civil Engineering, 2013, 25, 610-617.                                                                                           | 1.3 | 97        |
| 26 | Evaluating the effect of rejuvenators on the degree of blending and performance of high RAP, RAS, and RAP/RAS mixtures. Road Materials and Pavement Design, 2013, 14, 193-213.                                          | 2.0 | 162       |
| 27 | Evaluation of high RAP-WMA asphalt rubber mixtures. Road Materials and Pavement Design, 2013, 14, 129-147.                                                                                                              | 2.0 | 76        |
| 28 | Haul Time Effects on Unmodified, Foamed, and Additive-Modified Binders Used in Hot-Mix Asphalt.<br>Transportation Research Record, 2013, 2347, 88-95.                                                                   | 1.0 | 15        |
| 29 | Effect of Binder Type, Mastic, and Aggregate Type on the Low-Temperature Characteristics of Modified<br>Hot Mix Asphalt. Journal of Testing and Evaluation, 2013, 41, 914-923.                                          | 0.4 | 8         |
| 30 | Performance characteristics of plant produced high RAP mixtures. Road Materials and Pavement Design, 2012, 13, 183-208.                                                                                                 | 2.0 | 215       |
| 31 | Determining the Influence of Plant Type and Production Parameters on Performance of<br>Plant-Produced Reclaimed Asphalt Pavement Mixtures. Transportation Research Record, 2012, 2268,<br>71-81.                        | 1.0 | 19        |
| 32 | High-Performance Thin-Lift Overlays with High Reclaimed Asphalt Pavement Content and Warm-Mix<br>Asphalt Technology. Transportation Research Record, 2012, 2293, 18-28.                                                 | 1.0 | 26        |
| 33 | Evaluation of the effects of hot mix asphalt density on mixture fatigue performance, rutting performance and MEPDG distress predictions. International Journal of Pavement Engineering, 2011, 12, 161-175.              | 2.2 | 29        |
| 34 | Evaluating the Effect of Warm-Mix Asphalt Technologies on Moisture Characteristics of Asphalt<br>Binders and Mixtures. Transportation Research Record, 2011, 2209, 52-60.                                               | 1.0 | 56        |
| 35 | Fatigue Evaluation of Warm-Mix Asphalt Mixtures. Transportation Research Record, 2011, 2208, 26-32.                                                                                                                     | 1.0 | 38        |
| 36 | Evaluation of Binder Elastic Recovery on HMA Fatigue Cracking using Continuum Damage and Overlay<br>Test Based Analyses. Road Materials and Pavement Design, 2011, 12, 345-376.                                         | 2.0 | 11        |

WALAA S MOGAWER

| #  | Article                                                                                                                                                                                        | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Performance Characteristics of Thin-Lift Overlay Mixtures. Transportation Research Record, 2011, 2208, 17-25.                                                                                  | 1.0 | 51        |
| 38 | Assessment of Workability and Compactability of Warm-Mix Asphalt. Transportation Research Record, 2010, 2180, 36-47.                                                                           | 1.0 | 92        |
| 39 | Design, construction and implementation of Superpave pilot projects under a quality assurance programme. International Journal of Pavement Engineering, 2010, 11, 71-82.                       | 2.2 | 1         |
| 40 | Performance of Modified Asphalt Binders with Identical High-Temperature Performance Grades but<br>Varied Polymer Chemistries. Transportation Research Record, 2004, 1875, 33-44.               | 1.0 | 5         |
| 41 | Do Asphalt Mixtures Correlate Better with Mastics or Binders in Evaluating Permanent Deformation?.<br>Transportation Research Record, 2003, 1829, 16-25.                                       | 1.0 | 14        |
| 42 | Evaluation of Ability of Superpave Shear Tester To Differentiate Between Mixtures with Different<br>Aggregate Sizes. Transportation Research Record, 1998, 1630, 69-76.                        | 1.0 | 9         |
| 43 | Analysis of Pavement Rutting Data from FHWA Pavement Testing Facility Superpave Validation Study.<br>Transportation Research Record, 1997, 1590, 80-88.                                        | 1.0 | 9         |
| 44 | Effects of Mineral Fillers on Properties of Stone Matrix Asphalt Mixtures. Transportation Research<br>Record, 1996, 1530, 86-94.                                                               | 1.0 | 17        |
| 45 | Short- and Mid-Term Loose Mix Conditioning Protocols for Asphalt Overlay Balanced Mix Design and Quality Control and Quality Acceptance. Transportation Research Record, 0, , 036119812210839. | 1.0 | 1         |