Konstantinos Moutzouris

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8849962/publications.pdf

Version: 2024-02-01

		471509	3	395702	
57	1,203	17		33	
papers	citations	h-index		g-index	
			. '		
57	57	57		1268	
37	<i>31</i>	37		1200	
all docs	docs citations	times ranked		citing authors	

#	Article	lF	Citations
1	Complex refractive index of freshly excised human breast tissue as a marker of disease. Lasers in Medical Science, 2022, 37, 2597-2604.	2.1	6
2	Influence of the cation partner on levulinate ionic liquids properties. Journal of Molecular Liquids, 2022, 354, 118850.	4.9	8
3	Critical angle refractometry with optically isotropic attenuating media. Applied Physics B: Lasers and Optics, 2022, 128, 1.	2.2	3
4	Dielectric Study of Tetraalkylammonium and Tetraalkylphosphonium Levulinate Ionic Liquids. International Journal of Molecular Sciences, 2022, 23, 5642.	4.1	2
5	Two Prism Critical Angle Refractometry with Attenuating Media. Instruments, 2022, 6, 21.	1.8	1
6	Data on the refractive index of freshly-excised human tissues in the visible and near-infrared spectral range. Results in Physics, 2021, 22, 103833.	4.1	13
7	Extended derivative method of critical-angle refractometry for attenuating media: error analysis. Measurement Science and Technology, 2021, 32, 105007.	2.6	5
8	Critical Angle Refractometry for Lossy Media with a Priori Known Extinction Coefficient. Physics, 2021, 3, 569-578.	1.4	2
9	The derivative method of critical-angle refractometry for attenuating media. Journal of Optics (United Kingdom), 2020, 22, 075601.	2.2	11
10	On the Evaluation of Low-Cost PM Sensors for Air Quality Estimation. , 2019, , .		9
11	Critical-Angle Differential Refractometry of Lossy Media: A Theoretical Study and Practical Design Issues. Instruments, 2019, 3, 36.	1.8	1
12	Fiber Optic Measurement System for Fresnel Reflection Sensing: Calibration, Uncertainty, and Exemplary Application in Temperature-Modulated Isothermal Polymer Curing. Journal of Lightwave Technology, 2018, 36, 939-945.	4.6	10
13	Identifying a relation between refractive index and breast pathology using prism coupling refractometry. European Journal of Cancer, 2018, 92, S126.	2.8	O
14	Complex refractive index of normal and malignant human colorectal tissue in the visible and nearâ€infrared. Journal of Biophotonics, 2017, 10, 303-310.	2.3	50
15	Temperature effects on the viscosity and the wavelength-dependent refractive index of imidazolium-based ionic liquids with a phosphorus-containing anion. Physical Chemistry Chemical Physics, 2017, 19, 8201-8209.	2.8	28
16	Calibration and uncertainty of a fibre optic measurement system for Fresnel reflectometer sensors. , $2017, , .$		0
17	Visible to near-infrared refractive properties of freshly-excised human-liver tissues: marking hepatic malignancies. Scientific Reports, 2016, 6, 27910.	3.3	74
18	Refractive, dispersive and thermo-optic properties of twelve organic solvents in the visible and near-infrared. Applied Physics B: Lasers and Optics, 2014, 116, 617-622.	2.2	142

#	Article	IF	Citations
19	Electrical characterization of polymer matrix — TiO2 filler composites through isothermal polarization / depolarization currents and l–V tests. Open Physics, 2014, 12, .	1.7	O
20	A comparative study on the use of the extended-Cauchy dispersion equation for fitting refractive index data in crystals. Optical and Quantum Electronics, 2013, 45, 837-859.	3.3	6
21	A neural network approach for the prediction of the refractive index based on experimental data. Journal of Materials Science, 2012, 47, 883-891.	3.7	12
22	WSN Open Source Development Platform: Application to Green Learning. Procedia Engineering, 2011, 25, 1049-1052.	1.2	7
23	Temperature-dependent visible to near-infrared optical properties of 8 mol% Mg-doped lithium tantalate. Optical Materials Express, 2011, 1, 458.	3.0	30
24	Temperature-dependent refractive index of potassium acid phthalate (KAP) in the visible and near-infrared. Optical Materials, 2011, 33, 812-816.	3.6	6
25	High-harmonic-repetition-rate, 1 GHz femtosecond optical parametric oscillator pumped by a 76 MHz Ti:sapphire laser. Optics Letters, 2009, 34, 428.	3.3	35
26	Ultrabroadband Er:fiber Systems and Applications. Springer Series in Chemical Physics, 2009, , 735-737.	0.2	0
27	1-GHz femtosecond optical parametric oscillator pumped by a 76-MHz Ti:sapphire laser., 2009,,.		0
28	Highly versatile confocal microscopy system based on a tunable femtosecond Er:fiber source. Journal of Biophotonics, 2008, 1, 53-61.	2.3	31
29	Ultra-wide band wavelength converters. , 2008, , .		0
30	Confocal Microscopy and Micromanipulation Based on a Femtosecond Fiber Laser with Ultrawide Tuning Range., 2007,,.		0
31	Femtosecond mid-infrared difference-frequency-generation tunable between 3.2 & amp; #x003BC; m and 4.8 & amp; #x003BC; m from a compact fiber source., 2007,,.		1
32	Mid-infrared difference-frequency generation of ultrashort pulses tunable between 32 and 48 \hat{l} 4m from a compact fiber source. Optics Letters, 2007, 32, 1138.	3.3	189
33	Femtosecond mid-infrared difference-frequency-generation tunable between 3.2 μm and 4.8 μm from a compact fiber source. , 2007, , .		0
34	Sum frequency generation of continuously tunable blue pulses from a two-branch femtosecond fiber source. Optics Communications, 2007, 274, 417-421.	2.1	6
35	Multimilliwatt ultrashort pulses continuously tunable in the visible from a compact fiber source. Optics Letters, 2006, 31, 1148.	3.3	60
36	Highly efficient second, third and fourth harmonic generation from a two-branch femtosecond erbium fiber source. Optics Express, 2006, 14, 1905.	3.4	39

#	Article	IF	Citations
37	Two alternative approaches to broadband visible light generation with mode-locked Erbium fiber lasers. , 2006, , .		1
38	Fiber-laser pumped MgO:LiNBO <inf>3</inf> based frequency doubler providing sub-picosecond pulses continuously tunable from 520 nm to 700 nm. , 2006, , .		0
39	Extending scope and applicability of femtosecond light pulses from erbium-doped fiber lasers. , 2005, , .		0
40	Two-branch Er:fiber laser system for long-term optical frequency metrology. , 2005, , .		1
41	Nonlinear frequency conversion in semiconductor optical waveguides using birefringent, modal and quasi-phase-matching techniques. Journal of Optics, 2004, 6, 569-584.	1.5	42
42	Phase-locked two-branch erbium-doped fiber laser system for long-term precision measurements of optical frequencies. Optics Express, 2004, 12, 5872.	3.4	119
43	Generation of ultrashort electrical pulses in semiconductor waveguides. IEEE Photonics Technology Letters, 2003, 15, 428-430.	2.5	15
44	Quasi-phase-matched second-harmonic generation in a GaAs/AlAs superlattice waveguide by ion-implantation-induced intermixing. Optics Letters, 2003, 28, 911.	3.3	37
45	Influence of scattering and two-photon absorption on the optical loss in GaAs-Al/sub 2/O/sub 3/nonlinear waveguides measured using femtosecond pulses. IEEE Journal of Quantum Electronics, 2003, 39, 478-486.	1.9	16
46	Second-harmonic generation through optimized modal phase matching in semiconductor waveguides. Applied Physics Letters, 2003, 83, 620-622.	3.3	59
47	Measurements of optical loss in GaAs/Al2O3 nonlinear waveguides in the infrared using femtosecond scattering technique. Optics Communications, 2002, 213, 223-228.	2.1	17
48	Efficient second-harmonic generation in birefringently phase-matched GaAs/Al_2O_3 waveguides. Optics Letters, 2001, 26, 1785.	3.3	40
49	Quasi phase matching in GaAs–AlAs superlattice waveguides through bandgap tuning by use of quantum-well intermixing. Optics Letters, 2000, 25, 1370.	3.3	68
50	Quasi-phase-matching in GaAs-AlAs superlattice waveguides via bandgap tuning using quantum well intermixing. , 0, , .		1
51	Quantum well intermixing technologies for quasi-phase-matching gratings. , 0, , .		0
52	Measurements of optical loss in GaAs/Al/sub 2/O/sub 3/ nonlinear waveguides in the infrared using femtosecond scattering technique. , 0, , .		0
53	Generation of ultrashort electrical pulses in semiconductor waveguides. , 0, , .		0
54	Efficient second harmonic generation in birefringently phase-matched GaAs/Al/sub 2/O/sub 3/waveguides using femtosecond pulses at 2.01 \hat{l}^{1} /4m., 0, , .		0

#	Article	IF	CITATIONS
55	Quasi-phase-matched second harmonic generation in an GaAs/AlAs superlattice waveguide using ion-implantation induced intermixing. , 0, , .		O
56	First-order quasiphase matched second harmonic generation in GaAs/AlAs superlattice waveguides by use of ion-implantation induced intermixing. , 0, , .		0
57	Second harmonic generation in GaAs/AlGaAs waveguides with femtosecond pulses near 1.55 $\hat{l}^1/4$ m using modal phase matching technique. , 0, , .		O