
SÅ,awomir Borysiak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8849392/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Flammability of wood–polypropylene composites. Polymer Degradation and Stability, 2006, 91, 3339-3343.	2.7	68
2	Fundamental studies on lignocellulose/polypropylene composites: Effects of wood treatment on the transcrystalline morphology and mechanical properties. Journal of Applied Polymer Science, 2013, 127, 1309-1322.	1.3	68
3	Thermal and mechanical properties of chitosan nanocomposites with cellulose modified in ionic liquids. Journal of Thermal Analysis and Calorimetry, 2017, 130, 143-154.	2.0	59
4	Enzymatic engineering of nanometric cellulose for sustainable polypropylene nanocomposites. Industrial Crops and Products, 2021, 161, 113188.	2.5	53
5	The Influence of Processing and the Polymorphism of Lignocellulosic Fillers on the Structure and Properties of Composite Materials—A Review. Materials, 2013, 6, 2747-2767.	1.3	47
6	Nucleation ability of advanced functional silica/lignin hybrid fillers in polypropylene composites. Journal of Thermal Analysis and Calorimetry, 2016, 126, 251-262.	2.0	45
7	Determination of nucleating ability ofwood for non-isothermal crystallisation of polypropylene. Journal of Thermal Analysis and Calorimetry, 2007, 88, 455-462.	2.0	39
8	Preparation of Nanocellulose Using Ionic Liquids: 1-Propyl-3-Methylimidazolium Chloride and 1-Ethyl-3-Methylimidazolium Chloride. Molecules, 2020, 25, 1544.	1.7	39
9	Supermolecular structure and nucleation ability of polylactide-based composites with silica/lignin hybrid fillers. Journal of Thermal Analysis and Calorimetry, 2016, 126, 263-275.	2.0	38
10	Preparation and characterization of polypropylene composites reinforced by functional ZnO/lignin hybrid materials. Polymer Testing, 2019, 79, 106058.	2.3	38
11	POLYMORPHISM OF ISOTACTIC POLYPROPYLENE IN PRESENCE OF ADDITIVES, IN BLENDS AND IN COMPOSITES. Journal of Macromolecular Science - Physics, 2002, 41, 1267-1278.	0.4	37
12	Characterization of Polymer Inclusion Membranes (PIMs) Containing Phosphonium Ionic Liquids as Zn(II) Carriers. Industrial & Engineering Chemistry Research, 2018, 57, 5070-5082.	1.8	37
13	The thermo-oxidative stability and flammability of wood/polypropylene composites. Journal of Thermal Analysis and Calorimetry, 2015, 119, 1955-1962.	2.0	34
14	Influence of the polymorphism of cellulose on the formation of nanocrystals and their application in chitosan/nanocellulose composites. Journal of Applied Polymer Science, 2016, 133, .	1.3	32
15	Influence of wood mercerization on the crystallization of polypropylene in wood/PP composites. Journal of Thermal Analysis and Calorimetry, 2012, 109, 595-603.	2.0	29
16	Production of Nanocellulose by Enzymatic Treatment for Application in Polymer Composites. Materials, 2021, 14, 2124.	1.3	29
17	Influence of cellulose polymorphs on the polypropylene crystallization. Journal of Thermal Analysis and Calorimetry, 2013, 113, 281-289.	2.0	28
18	The influence of the cation type of ionic liquid on the production of nanocrystalline cellulose and mechanical properties of chitosan-based biocomposites. Cellulose, 2019, 26, 4827-4840.	2.4	28

SÅ, AWOMIR BORYSIAK

#	Article	IF	CITATIONS
19	Nanocellulose Production Using Ionic Liquids with Enzymatic Pretreatment. Materials, 2021, 14, 3264.	1.3	28
20	Influence of chemical modification of wood on the crystallisation of polypropylene. European Journal of Wood and Wood Products, 2006, 64, 451-454.	1.3	27
21	The effect of chemical modification of wood in ionic liquids on the supermolecular structure and mechanical properties of wood/polypropylene composites. Cellulose, 2018, 25, 4639-4652.	2.4	27
22	Supermolecular structure of wood/polypropylene composites: I. The influence of processing parameters and chemical treatment of the filler. Polymer Bulletin, 2010, 64, 275-290.	1.7	24
23	Thermal and Mechanical Properties of Silica–Lignin/Polylactide Composites Subjected to Biodegradation. Materials, 2018, 11, 2257.	1.3	23
24	Cilostazol-loaded electrospun three-dimensional systems for potential cardiovascular application: Effect of fibers hydrophilization on drug release, and cytocompatibility. Journal of Colloid and Interface Science, 2019, 536, 310-327.	5.0	22
25	A study of transcrystallinity in polypropylene in the presence of wood irradiated with gamma rays. Journal of Thermal Analysis and Calorimetry, 2010, 101, 439-445.	2.0	19
26	Chemical and Structural Characterization of Maize Stover Fractions in Aspect of Its Possible Applications. Materials, 2021, 14, 1527.	1.3	17
27	Mechanical Properties of Lignocellulosic/Polypropylene Composites. Molecular Crystals and Liquid Crystals, 2008, 484, 13/[379]-22/[388].	0.4	14
28	Functional MgO–Lignin Hybrids and Their Application as Fillers for Polypropylene Composites. Molecules, 2020, 25, 864.	1.7	14
29	Propolis and Organosilanes as Innovative Hybrid Modifiers in Wood-Based Polymer Composites. Materials, 2021, 14, 464.	1.3	14
30	Chitosan biocomposites with enzymatically produced nanocrystalline cellulose. Polymer Composites, 2018, 39, E448.	2.3	13
31	Polypropylene - cellulose fibres composites. Part I. Influence of conditions of extrusion and injection processes on the structure of polypropylene matrix. Polimery, 2004, 49, 541-546.	0.4	12
32	Polypropylene-lignocellulosic material composites as promising sound absorbing materials. Polimery, 2009, 54, 430-435.	0.4	12
33	Conversion of Carbohydrates in Lignocellulosic Biomass after Chemical Pretreatment. Energies, 2022, 15, 254.	1.6	12
34	Miscanthus and Sorghum as sustainable biomass sources for nanocellulose production. Industrial Crops and Products, 2022, 186, 115177.	2.5	12
35	The influence of chemical modification of wood on its nucleation ability in polypropylene composites. Polimery, 2009, 54, 820-827.	0.4	10
36	The Study of Glucose and Xylose Content by Acid Hydrolysis of Ash Wood (Fraxinus excelsior L.) after Thermal Modification in Nitrogen by HPLC Method. BioResources, 2014, 9, .	0.5	9

SÅ, AWOMIR BORYSIAK

#	Article	IF	CITATIONS
37	The influence of crystalline structure of cellulose in chitosan-based biocomposites on removal of Ca(II), Mg(II), Fe(III) ion in aqueous solutions. Cellulose, 2021, 28, 5745.	2.4	9
38	INFLUENCE OF THE PULLING OF EMBEDDED NATURAL FIBERS ON THE CRYSTAL STRUCTURE OF POLYPROPYLENE MATRIX. International Journal of Polymeric Materials and Polymeric Biomaterials, 2004, 53, 725-733.	1.8	8
39	Innovative ionic liquids as functional agent for wood-polymer composites. Cellulose, 2021, 28, 10589-10608.	2.4	8
40	Highly Insulative PEG-Grafted Cellulose Polyurethane Foams—From Synthesis to Application Properties. Materials, 2021, 14, 6363.	1.3	8
41	Crystallization of different polypropylene matrices in the presence of wood fillers. Polymer Composites, 2015, 36, 1813-1818.	2.3	7
42	TiO2/nanocellulose hybrids as functional additives for advanced polypropylene nanocomposites. Industrial Crops and Products, 2022, 176, 114314.	2.5	7
43	Evaluation of the Hydrolysis Efficiency of Bacterial Cellulose Gel Film after the Liquid Hot Water and Steam Explosion Pretreatments. Polymers, 2022, 14, 2032.	2.0	7
44	Influence of wood thermal modification on the supermolecular structure of polypropylene composites. Polymer Composites, 2021, 42, 2087-2100.	2.3	6
45	Statistical prediction of biogas and methane yields during anaerobic digestion based on the composition of lignocellulosic biomass. BioResources, 2021, 16, 7086-7100.	0.5	6
46	Thermal and mechanical properties of biodegradable composites with nanometric cellulose. Journal of Thermal Analysis and Calorimetry, 2019, 138, 4407-4416.	2.0	5
47	Cladium mariscus Saw-Sedge versus Sawdust—Efficient Biosorbents for Removal of Hazardous Textile Dye C.I. Basic Blue 3 from Aqueous Solutions. Processes, 2022, 10, 586.	1.3	5
48	The supermolecular structure of isotactic polypropylene/atactic polystyrene blends. Polymer Engineering and Science, 2011, 51, 2505-2516.	1.5	4
49	Analysis of the Nucleation Activity of Wood Fillers for Green Polymer Composites. Fibres and Textiles in Eastern Europe, 2018, 26, 66-72.	0.2	4
50	Recycling of lignocellulosics filled polypropylene composites. I. Analysis of thermal properties, morphology, and amount of free radicals. Journal of Applied Polymer Science, 2015, 132, .	1.3	2
51	The Structure, Morphology, and Mechanical Properties of Thermoplastic Composites with Ligncellulosic Fiber. , 2011, , 263-290.		2
52	Bioactive Propolis-Silane System as Antifungal Agent in Lignocellulosic-Polymer Composites. Materials, 2022, 15, 3435.	1.3	2
53	The effect of the time process of enzymatic hydrolysis on nanocellulose properties. Annals of WULS Forestry and Wood Technology, 2021, 115, 101-107.	0.0	0
54	Preparation of nanocellulose by hydrolysis with ionic liquids and two-step hydrolysis with ionic liquids and enzymes. Annals of WULS Forestry and Wood Technology, 2021, 116, 5-14.	0.0	0