
Meghan E Lamm

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8849371/publications.pdf Version: 2024-02-01

MECHAN FLAMM

#	Article	IF	CITATIONS
1	Alignment of Cellulose Nanofibers: Harnessing Nanoscale Properties to Macroscale Benefits. ACS Nano, 2021, 15, 3646-3673.	14.6	108
2	Recent Advances in Functional Materials through Cellulose Nanofiber Templating. Advanced Materials, 2021, 33, e2005538.	21.0	77
3	Biomass Approach toward Robust, Sustainable, Multiple-Shape-Memory Materials. ACS Macro Letters, 2016, 5, 602-606.	4.8	62
4	Recycling of natural fiber composites: Challenges and opportunities. Resources, Conservation and Recycling, 2022, 177, 105962.	10.8	62
5	Renewable atom-efficient polyesters and thermosetting resins derived from high oleic soybean oil. Green Chemistry, 2018, 20, 1106-1113.	9.0	55
6	Supramolecular Polymer Nanocomposites Derived from Plant Oils and Cellulose Nanocrystals. Macromolecules, 2017, 50, 7475-7483.	4.8	53
7	Material Extrusion Additive Manufacturing of Wood and Lignocellulosic Filled Composites. Polymers, 2020, 12, 2115.	4.5	52
8	Review on Nonconventional Fibrillation Methods of Producing Cellulose Nanofibrils and Their Applications. Biomacromolecules, 2021, 22, 4037-4059.	5.4	45
9	Plant Oilâ€Derived Epoxy Polymers toward Sustainable Biobased Thermosets. Macromolecular Rapid Communications, 2017, 38, 1700009.	3.9	40
10	Sustainable epoxy resins derived from plant oils with thermo- and chemo-responsive shape memory behavior. Polymer, 2018, 144, 121-127.	3.8	36
11	Tuning Mechanical Properties of Biobased Polymers by Supramolecular Chain Entanglement. Macromolecules, 2019, 52, 8967-8975.	4.8	31
12	A biomass approach to mendable bio-elastomers. Soft Matter, 2017, 13, 1306-1313.	2.7	27
13	Plant oil-derived copolymers with remarkable post-polymerization induced mechanical enhancement for high performance coating applications. Polymer, 2019, 174, 170-177.	3.8	25
14	Facial Amphiphilicity-Induced Self-Assembly (FAISA) of Amphiphilic Copolymers. Macromolecules, 2019, 52, 9526-9535.	4.8	15
15	Recycled Cardboard Containers as a Low Energy Source for Cellulose Nanofibrils and Their Use in Poly(<scp>l</scp> -lactide) Nanocomposites. ACS Sustainable Chemistry and Engineering, 2021, 9, 13460-13470.	6.7	14
16	A facile approach to thermomechanically enhanced fatty acid-containing bioplastics using metal–ligand coordination. Polymer Chemistry, 2019, 10, 6570-6579.	3.9	13
17	Exploiting chitosan to improve the interface of nanocellulose reinforced polymer composites. Cellulose, 2022, 29, 3859-3870.	4.9	12
18	Hermetically sealed porous-wall hollow microspheres enabled by monolithic glass coatings: Potential for thermal insulation applications. Vacuum, 2022, 195, 110667.	3.5	5

#	Article	IF	CITATIONS
19	Cellulose Nanofiber Templating: Recent Advances in Functional Materials through Cellulose Nanofiber Templating (Adv. Mater. 12/2021). Advanced Materials, 2021, 33, 2170094.	21.0	1