
Liming Fang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/884929/publications.pdf Version: 2024-02-01

LIMING FANG

#	Article	IF	CITATIONS
1	Musselâ€Inspired Adhesive and Conductive Hydrogel with Longâ€Lasting Moisture and Extreme Temperature Tolerance. Advanced Functional Materials, 2018, 28, 1704195.	7.8	788
2	Mussel-Inspired Adhesive and Tough Hydrogel Based on Nanoclay Confined Dopamine Polymerization. ACS Nano, 2017, 11, 2561-2574.	7.3	749
3	Plant-inspired adhesive and tough hydrogel based on Ag-Lignin nanoparticles-triggered dynamic redox catechol chemistry. Nature Communications, 2019, 10, 1487.	5.8	675
4	A Musselâ€Inspired Conductive, Selfâ€Adhesive, and Selfâ€Healable Tough Hydrogel as Cell Stimulators and Implantable Bioelectronics. Small, 2017, 13, 1601916.	5.2	543
5	Tough, self-healable and tissue-adhesive hydrogel with tunable multifunctionality. NPG Asia Materials, 2017, 9, e372-e372.	3.8	441
6	Transparent, Adhesive, and Conductive Hydrogel for Soft Bioelectronics Based on Light-Transmitting Polydopamine-Doped Polypyrrole Nanofibrils. Chemistry of Materials, 2018, 30, 5561-5572.	3.2	331
7	Musselâ€Inspired Contactâ€Active Antibacterial Hydrogel with High Cell Affinity, Toughness, and Recoverability. Advanced Functional Materials, 2019, 29, 1805964.	7.8	309
8	Mussel-Inspired Tissue-Adhesive Hydrogel Based on the Polydopamine–Chondroitin Sulfate Complex for Growth-Factor-Free Cartilage Regeneration. ACS Applied Materials & Interfaces, 2018, 10, 28015-28026.	4.0	227
9	Highly Porous Polymer Aerogel Filmâ€Based Triboelectric Nanogenerators. Advanced Functional Materials, 2018, 28, 1706365.	7.8	226
10	Graphene Oxideâ€Templated Conductive and Redoxâ€Active Nanosheets Incorporated Hydrogels for Adhesive Bioelectronics. Advanced Functional Materials, 2020, 30, 1907678.	7.8	225
11	Conductive and Tough Hydrogels Based on Biopolymer Molecular Templates for Controlling in Situ Formation of Polypyrrole Nanorods. ACS Applied Materials & Interfaces, 2018, 10, 36218-36228.	4.0	181
12	A strong, tough, and osteoconductive hydroxyapatite mineralized polyacrylamide/dextran hydrogel for bone tissue regeneration. Acta Biomaterialia, 2019, 88, 503-513.	4.1	143
13	An Anisotropic Hydrogel Based on Mussel-Inspired Conductive Ferrofluid Composed of Electromagnetic Nanohybrids. Nano Letters, 2019, 19, 8343-8356.	4.5	107
14	Highly compressible and superior low temperature tolerant supercapacitors based on dual chemically crosslinked PVA hydrogel electrolytes. Journal of Materials Chemistry A, 2020, 8, 6219-6228.	5.2	101
15	Mussel-Inspired Redox-Active and Hydrophilic Conductive Polymer Nanoparticles for Adhesive Hydrogel Bioelectronics. Nano-Micro Letters, 2020, 12, 169.	14.4	98
16	Proteinâ€Affinitive Polydopamine Nanoparticles as an Efficient Surface Modification Strategy for Versatile Porous Scaffolds Enhancing Tissue Regeneration. Particle and Particle Systems Characterization, 2016, 33, 89-100.	1.2	56
17	Pulse Electrochemical Driven Rapid Layer-by-Layer Assembly of Polydopamine and Hydroxyapatite Nanofilms via Alternative Redox <i>in Situ</i> Synthesis for Bone Regeneration. ACS Biomaterials Science and Engineering, 2016, 2, 920-928.	2.6	52
18	Experimental and simulation studies of strontium/fluoride-codoped hydroxyapatite nanoparticles with osteogenic and antibacterial activities. Colloids and Surfaces B: Biointerfaces, 2019, 182, 110359.	2.5	43

LIMING FANG

#	Article	IF	CITATIONS
19	Graphene oxide and hyperbranched polymer-toughened hydrogels with improved absorption properties and durability. Journal of Materials Science, 2015, 50, 3457-3466.	1.7	38
20	Self-assembled Biodegradable Nanoparticles and Polysaccharides as Biomimetic ECM Nanostructures for the Synergistic effect of RGD and BMP-2 on Bone Formation. Scientific Reports, 2016, 6, 25090.	1.6	36
21	Durable Antibacterial Cotton Fabrics Based on Natural Borneolâ€Derived Antiâ€MRSA Agents. Advanced Healthcare Materials, 2020, 9, e2000186.	3.9	34
22	Polydopamine mediated assembly of hydroxyapatite nanoparticles and bone morphogenetic proteinâ€⊋ on magnesium alloys for enhanced corrosion resistance and bone regeneration. Journal of Biomedical Materials Research - Part A, 2017, 105, 2750-2761.	2.1	30
23	Mussel-inspired nano-multilayered coating on magnesium alloys for enhanced corrosion resistance and antibacterial property. Colloids and Surfaces B: Biointerfaces, 2017, 157, 432-439.	2.5	29
24	Antibacterial activity, corrosion resistance and wear behavior of spark plasma sintered Ta-5Cu alloy for biomedical applications. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 74, 315-323.	1.5	28
25	Biotin-Modified Polylactic- <i>co</i> -Glycolic Acid Nanoparticles with Improved Antiproliferative Activity of 15,16-Dihydrotanshinone I in Human Cervical Cancer Cells. Journal of Agricultural and Food Chemistry, 2018, 66, 9219-9230.	2.4	26
26	Influence of Sintering Temperature on Pore Structure and Apatite Formation of a Sol–Gelâ€Derived Bioactive Glass. Journal of the American Ceramic Society, 2010, 93, 32-35.	1.9	24
27	Highly compressible hydrogel sensors with synergistic long-lasting moisture, extreme temperature tolerance and strain-sensitivity properties. Materials Chemistry Frontiers, 2020, 4, 3319-3327.	3.2	22
28	Understanding the interfacial interactions between dopamine and different graphenes for biomedical materials. Materials Chemistry Frontiers, 2017, 1, 1156-1164.	3.2	18
29	Role of Stiffness versus Wettability in Regulating Cell Behaviors on Polymeric Surfaces. ACS Biomaterials Science and Engineering, 2020, 6, 912-922.	2.6	17
30	<i>In situ</i> reactive compatibilized polypropylene/nitrile butadiene rubber blends by zinc dimethacrylate: Preparation, structure, and properties. Polymer Engineering and Science, 2014, 54, 2321-2331.	1.5	16
31	Effects of atomic-level nano-structured hydroxyapatite on adsorption of bone morphogenetic protein-7 and its derived peptide by computer simulation. Scientific Reports, 2017, 7, 15152.	1.6	16
32	The interaction of chitosan and BMPâ€⊋ tuned by deacetylation degree and pH value. Journal of Biomedical Materials Research - Part A, 2019, 107, 769-779.	2.1	16
33	Elastic polyurethane bearing pendant TGF-β1 affinity peptide for potential tissue engineering applications. Materials Science and Engineering C, 2018, 83, 67-77.	3.8	14
34	Structure and properties of polyacrylic acid modified hydroxyapatite/liquid crystal polymer composite. Journal of Reinforced Plastics and Composites, 2011, 30, 1155-1163.	1.6	13
35	Interaction Behaviors of Fibrinopeptide-A and Graphene with Different Functional Groups: A Molecular Dynamics Simulation Approach. Journal of Physical Chemistry B, 2017, 121, 7907-7915.	1.2	10
36	Anchoring TGF-β1 on biomaterial surface via affinitive interactions: Effects on spatial structures and bioactivity. Colloids and Surfaces B: Biointerfaces, 2018, 166, 254-261.	2.5	10

LIMING FANG

#	Article	IF	CITATIONS
37	Processing and characterization of TLCP fibers reinforced by 1Âwt% MWCNT. Journal of Materials Science, 2012, 47, 8094-8102.	1.7	9
38	Functionalised silica/epoxy nanocomposites with enhanced fracture toughness for large-scale applications. Journal of Composite Materials, 2015, 49, 1439-1447.	1.2	6
39	Blocking of matrix metalloproteinases-13 responsive peptide in poly(urethane urea) for potential cartilage tissue engineering applications. Journal of Biomaterials Applications, 2018, 32, 999-1010.	1.2	4
40	Electrical field induce mBMSCs differentiation to osteoblast via protein adsorption enhancement. Colloids and Surfaces B: Biointerfaces, 2022, 209, 112158.	2.5	4
41	Morphology and properties of poly(vinylidene fluoride)/silicone rubber blends. Journal of Applied Polymer Science, 2014, 131, .	1.3	3
42	Octacalcium phosphate fiber synthesized by homogeneous precipitation method. Journal Wuhan University of Technology, Materials Science Edition, 2010, 25, 747-752.	0.4	1