
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8849114/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Liquid crystalline spinning of spider silk. Nature, 2001, 410, 541-548.	13.7	1,444
2	Surprising strength of silkworm silk. Nature, 2002, 418, 741-741.	13.7	855
3	Relationships between supercontraction and mechanical properties of spider silk. Nature Materials, 2005, 4, 901-905.	13.3	270
4	Silk as a Biomimetic Ideal for Structural Polymers. Advanced Materials, 2009, 21, 487-492.	11.1	260
5	Sexual dimorphism and distorted sex ratios in spiders. Nature, 1992, 360, 156-159.	13.7	255
6	Modulation of the mechanical properties of spider silk by coating with water. Nature, 1989, 340, 305-307.	13.7	254
7	Spider silk as archetypal protein elastomer. Soft Matter, 2006, 2, 377.	1.2	243
8	Variability in the mechanical properties of spider silks on three levels: interspecific, intraspecific and intraindividual. International Journal of Biological Macromolecules, 1999, 24, 301-306.	3.6	238
9	Strength and structure of spiders' silks. Reviews in Molecular Biotechnology, 2000, 74, 67-83.	2.9	219
10	Changes in element composition along the spinning duct in a Nephila spider. Die Naturwissenschaften, 2001, 88, 179-182.	0.6	217
11	Compounds in the droplets of the orb spider's viscid spiral. Nature, 1990, 345, 526-528.	13.7	206
12	Proline and Processing of Spider Silks. Biomacromolecules, 2008, 9, 116-121.	2.6	198
13	Stable isotopes in elephant hair document migration patterns and diet changes. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 371-373.	3.3	193
14	Biology of spider silk. International Journal of Biological Macromolecules, 1999, 24, 81-88.	3.6	191
15	Amyloidogenic nature of spider silk. FEBS Journal, 2002, 269, 4159-4163.	0.2	184
16	Behavioural reactions of elephants towards a dying and deceased matriarch. Applied Animal Behaviour Science, 2006, 100, 87-102.	0.8	183
17	pH Induced Changes in the Rheology of Silk Fibroin Solution from the Middle Division ofBombyx moriSilkworm. Biomacromolecules, 2004, 5, 768-772.	2.6	176
18	Novel Assembly Properties of Recombinant Spider Dragline Silk Proteins. Current Biology, 2004, 14, 2070-2074.	1.8	175

FRITZ VOLLRATH

#	Article	IF	CITATIONS
19	Dwarf males. Trends in Ecology and Evolution, 1998, 13, 159-163.	4.2	174
20	Conformation transition kinetics of Bombyx mori silk protein. Proteins: Structure, Function and Bioinformatics, 2007, 68, 223-231.	1.5	174
21	The Role of Behavior in the Evolution of Spiders, Silks, and Webs. Annual Review of Ecology, Evolution, and Systematics, 2007, 38, 819-846.	3.8	159
22	Silks as ancient models for modern polymers. Polymer, 2009, 50, 5623-5632.	1.8	157
23	Elephants avoid costly mountaineering. Current Biology, 2006, 16, R527-R529.	1.8	153
24	Analysis of Structure/Property Relationships in Silkworm (Bombyx mori) and Spider Dragline (Nephila) Tj ETQq0 () 0 _{.1g} BT /0	Dverlock 10 Tf 148
25	Spider Silk Proteins – Mechanical Property and Gene Sequence. Zoological Science, 2005, 22, 273-281.	0.3	147
26	Can silk become an effective reinforcing fibre? A property comparison with flax and glass reinforced composites. Composites Science and Technology, 2014, 101, 173-183.	3.8	144
27	The effect of solvents on the contraction and mechanical properties of spider silk. Polymer, 1999, 40, 1799-1806.	1.8	143
28	Spider Silk Protein Refolding Is Controlled by Changing pH. Biomacromolecules, 2004, 5, 704-710.	2.6	142
29	Structural engineering of an orb-spider's web. Nature, 1995, 373, 146-148.	13.7	134
30	Silk Fibroinâ€Regulated Crystallization of Calcium Carbonate. Advanced Functional Materials, 2008, 18, 2172-2179.	7.8	129
31	Structure and physical properties of silkworm cocoons. Journal of the Royal Society Interface, 2012, 9, 2299-2308.	1.5	128
32	Male Body Size and Fitness in the Web-building Spider <i>Nephila clavipes</i> . Zeitschrift Für Tierpsychologie, 1980, 53, 61-78.	0.2	126
33	Silk cocoon (Bombyx mori): Multi-layer structure and mechanical properties. Acta Biomaterialia, 2012, 8, 2620-2627.	4.1	123
34	Shear-Induced Self-Assembly of Native Silk Proteins into Fibrils Studied by Atomic Force Microscopy. Biomacromolecules, 2012, 13, 676-682.	2.6	121
35	Rheological Characterization of Nephila Spidroin Solution. Biomacromolecules, 2002, 3, 644-648.	2.6	119
36	Fabrication of Magnetic Spider Silk and Other Silk-Fiber Composites Using Inorganic Nanoparticles. Advanced Materials, 1998, 10, 801-805.	11.1	111

#	Article	IF	CITATIONS
37	Understanding the Mechanical Properties of <i>Antheraea Pernyi</i> Silk—From Primary Structure to Condensed Structure of the Protein. Advanced Functional Materials, 2011, 21, 729-737.	7.8	111
38	Thread biomechanics in the two orb-weaving spidersAraneus diadematus (Araneae, Araneidae) andUloborus walckenaerius (Araneae, Uloboridae). The Journal of Experimental Zoology, 1995, 271, 1-17.	1.4	110
39	Shape memory in spider draglines. Nature, 2006, 440, 621-621.	13.7	100
40	Morphology and structure of silkworm cocoons. Materials Science and Engineering C, 2012, 32, 772-778.	3.8	99
41	Silk and Synthetic Polymers: Reconciling 100 Degrees of Separation. Advanced Materials, 2012, 24, 105-109.	11.1	99
42	Design Variability in Web Geometry of an Orb-Weaving Spider. Physiology and Behavior, 1997, 62, 735-743.	1.0	98
43	X-ray Diffraction on Spider Silk during Controlled Extrusion under a Synchrotron Radiation X-ray Beam. Biomacromolecules, 2000, 1, 622-626.	2.6	97
44	Structure and Behavior of Regenerated Spider Silk. Macromolecules, 2003, 36, 1157-1161.	2.2	97
45	Identification and classification of silks using infrared spectroscopy. Journal of Experimental Biology, 2015, 218, 3138-49.	0.8	97
46	Beehive fences as effective deterrents for crop-raiding elephants: field trials in northern Kenya. African Journal of Ecology, 2011, 49, 431-439.	0.4	96
47	Silk micrococoons for protein stabilisation and molecular encapsulation. Nature Communications, 2017, 8, 15902.	5.8	96
48	Beehive fence deters cropâ€raiding elephants. African Journal of Ecology, 2009, 47, 131-137.	0.4	91
49	In Situ X-ray Diffraction during Forced Silking of Spider Silk. Macromolecules, 1999, 32, 4464-4466.	2.2	90
50	Behaviour of the kleptoparasitic spider Argyrodes elevatus (Araneae, theridiidae). Animal Behaviour, 1979, 27, 515-521.	0.8	88
51	Web spider's dilemma: a risky move or site dependent growth. Oecologia, 1985, 68, 69-72.	0.9	86
52	There are many more lessons still to be learned from spider silks. Soft Matter, 2011, 7, 9595.	1.2	86
53	Thermally Induced Changes in Dynamic Mechanical Properties of Native Silks. Biomacromolecules, 2013, 14, 930-937.	2.6	83
54	The effect of solvents on spider silk studied by mechanical testing and single-fibre Raman spectroscopy. International Journal of Biological Macromolecules, 1999, 24, 295-300.	3.6	82

#	Article	IF	CITATIONS
55	The conserved C-termini contribute to the properties of spider silk fibroins. Biochemical and Biophysical Research Communications, 2005, 338, 897-902.	1.0	81
56	Spider Silk: Mother Nature's Bio-Superlens. Nano Letters, 2016, 16, 5842-5845.	4.5	80
57	Eusociality and extraordinary sex ratios in the spider Anelosimus eximius (Araneae: Theridiidae). Behavioral Ecology and Sociobiology, 1986, 18, 283-287.	0.6	78
58	Colony Foundation in a Social Spider. Zeitschrift Für Tierpsychologie, 1982, 60, 313-324.	0.2	76
59	NMR Characterization of Native Liquid Spider Dragline Silk fromNephila edulis. Biomacromolecules, 2004, 5, 834-839.	2.6	74
60	In-drop capillary spooling of spider capture thread inspires hybrid fibers with mixed solid–liquid mechanical properties. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 6143-6147.	3.3	73
61	Design features of the orb web of the spider, Araneus diadematus. Behavioral Ecology, 1994, 5, 280-287.	1.0	68
62	African bees to control African elephants. Die Naturwissenschaften, 2002, 89, 508-511.	0.6	68
63	The spinning processes for spider silk. Soft Matter, 2006, 2, 448.	1.2	68
64	African elephants run from the sound of disturbed bees. Current Biology, 2007, 17, R832-R833.	1.8	68
65	Elasticity of Spider Silks. Biomacromolecules, 2008, 9, 1782-1786.	2.6	65
66	Secondary Structures and Conformational Changes in Flagelliform, Cylindrical, Major, and Minor Ampullate Silk Proteins. Temperature and Concentration Effects. Biomacromolecules, 2004, 5, 2105-2115.	2.6	64
67	Effects of prey quality and availability on the life history of a trap-building predator. Oikos, 2003, 101, 631-638.	1.2	62
68	Analysis and Interpretation of Orb Spider Exploration and Web-building behavior. Advances in the Study of Behavior, 1992, , 147-199.	1.0	61
69	Two Mechanisms for Supercontraction in <i>Nephila</i> Spider Dragline Silk. Biomacromolecules, 2011, 12, 4030-4035.	2.6	61
70	Tensile and shear mechanical properties of rotator cuff repair patches. Journal of Shoulder and Elbow Surgery, 2012, 21, 1168-1176.	1.2	60
71	The effect of prey type on the geometry of the capture web of Araneus diadematus. Die Naturwissenschaften, 1998, 85, 391-394.	0.6	59
72	Altered geometry of webs in spiders with regenerated legs. Nature, 1987, 328, 247-248.	13.7	57

#	Article	IF	CITATIONS
73	Copper in the silk formation process ofBombyx morisilkworm. FEBS Letters, 2003, 554, 337-341.	1.3	57
74	Structural Conformation of Spidroin in Solution:Â A Synchrotron Radiation Circular Dichroism Study. Biomacromolecules, 2004, 5, 758-767.	2.6	57
75	Silk protein aggregation kinetics revealed by Rheo-IR. Acta Biomaterialia, 2014, 10, 776-784.	4.1	56
76	Forced Reeling of <i>Bombyx mori</i> Silk: Separating Behavior and Processing Conditions. Biomacromolecules, 2013, 14, 3653-3659.	2.6	55
77	Silk fibroin gelation via non-solvent induced phase separation. Biomaterials Science, 2016, 4, 460-473.	2.6	55
78	Comparing the microstructure and mechanical properties of Bombyx mori and Antheraea pernyi cocoon composites. Acta Biomaterialia, 2017, 47, 60-70.	4.1	55
79	Analysing Spider Web-building Behaviour with Rule-based Simulations and Genetic Algorithms. Journal of Theoretical Biology, 1997, 185, 321-331.	0.8	52
80	Exploring the Use of Native Spider Silk as an Optical Fiber for Chemical Sensing. Journal of Lightwave Technology, 2018, 36, 1138-1144.	2.7	52
81	Small angle neutron scattering of native and reconstituted silk fibroin. Soft Matter, 2010, 6, 4389.	1.2	51
82	Prey Capture and Feeding in the Social Spider Anelosimus eximius. Zeitschrift Für Tierpsychologie, 1983, 61, 334-340.	0.2	50
83	Structural Disorder in Silk Proteins Reveals the Emergence of Elastomericity. Biomacromolecules, 2008, 9, 216-221.	2.6	48
84	Human footprint and protected areas shape elephant range across Africa. Current Biology, 2021, 31, 2437-2445.e4.	1.8	48
85	African Elephant Alarm Calls Distinguish between Threats from Humans and Bees. PLoS ONE, 2014, 9, e89403.	1.1	48
86	Endocrine and behavioral changes in male African elephants: Linking hormone changes to sexual state and reproductive tactics. Hormones and Behavior, 2008, 54, 539-548.	1.0	47
87	Dry-Spun Silk Produces Native-Like Fibroin Solutions. Biomacromolecules, 2016, 17, 3198-3204.	2.6	46
88	Life cycle assessment of Indian silk. Journal of Cleaner Production, 2014, 81, 158-167.	4.6	45
89	Silks cope with stress by tuning their mechanical properties under load. Polymer, 2012, 53, 2717-2726.	1.8	44
90	The impact behaviour of silk cocoons. Journal of Experimental Biology, 2013, 216, 2648-2657.	0.8	44

#	Article	IF	CITATIONS
91	Interesting green elastomeric composites: Silk textile reinforced natural rubber. Polymer Testing, 2016, 55, 17-24.	2.3	44
92	Class transitions in native silk fibres studied by dynamic mechanical thermal analysis. Soft Matter, 2016, 12, 5926-5936.	1.2	44
93	Unfreezing the behaviour of two orb spiders. Physiology and Behavior, 1995, 58, 1167-1173.	1.0	43
94	Opportunities for silk textiles in reinforced biocomposites: Studying through-thickness compaction behaviour. Composites Part A: Applied Science and Manufacturing, 2014, 62, 1-10.	3.8	43
95	Demineralization Enables Reeling of Wild Silkmoth Cocoons. Biomacromolecules, 2011, 12, 2257-2266.	2.6	42
96	Concentration State Dependence of the Rheological and Structural Properties of Reconstituted Silk. Biomacromolecules, 2009, 10, 2724-2728.	2.6	41
97	The Speed of Sound in Silk: Linking Material Performance to Biological Function. Advanced Materials, 2014, 26, 5179-5183.	11.1	41
98	Linking naturally and unnaturally spun silks through the forced reeling of Bombyx mori. Acta Biomaterialia, 2015, 11, 247-255.	4.1	41
99	Bee Threat Elicits Alarm Call in African Elephants. PLoS ONE, 2010, 5, e10346.	1.1	41
100	β‧ilks: Enhancing and Controlling Aggregation. Advances in Protein Chemistry, 2006, 73, 17-53.	4.4	40
101	Differential Scanning Fluorimetry provides high throughput data on silk protein transitions Scientific Reports, 2014, 4, 5625.	1.6	40
102	Nutrient balance affects foraging behaviour of a trap-building predator. Biology Letters, 2009, 5, 735-738.	1.0	39
103	A poisonous surprise under the coat of the African crested rat. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 675-680.	1.2	38
104	Water mobility, denaturation and the glass transition in proteins. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2012, 1824, 785-791.	1.1	37
105	Silk Reconstitution Disrupts Fibroin Self-Assembly. Biomacromolecules, 2015, 16, 2796-2804.	2.6	37
106	Further Investigation on Potassium-Induced Conformation Transition ofNephilaSpidroin Film with Two-Dimensional Infrared Correlation Spectroscopy. Biomacromolecules, 2005, 6, 302-308.	2.6	36
107	Spider Silk: Thousands of Nano-Filaments and Dollops of Sticky Glue. Current Biology, 2006, 16, R925-R927.	1.8	36
108	Spider webs are efficient collectors of agrochemical spray. Pest Management Science, 1992, 36, 47-51.	0.6	35

#	Article	IF	CITATIONS
109	Behavior of silk protein at the air–water interface. Soft Matter, 2012, 8, 9705.	1.2	35
110	Chitin in the Silk Gland Ducts of the Spider Nephila edulis and the Silkworm Bombyx mori. PLoS ONE, 2013, 8, e73225.	1.1	34
111	Observation of Interfacial Damage in a Silkâ€Epoxy Composite, Using a Simple Mechanoresponsive Fluorescent Probe. Advanced Materials Interfaces, 2017, 4, 1601018.	1.9	33
112	The impact of elephants, <i>Loxodonta africana,</i> on woody vegetation through selective debarking in Samburu and Buffalo Springs National Reserves, Kenya. African Journal of Ecology, 2010, 48, 87-95.	0.4	32
113	Extreme body size variability in the golden silk spider (Nephila edulis) does not extend to genitalia. Journal of Zoology, 2000, 251, 7-14.	0.8	31
114	Biophotonics of Native Silk Fibrils. Macromolecular Bioscience, 2018, 18, e1700295.	2.1	31
115	The effects of neurotoxins on web-geometry and web-building behaviour in Araneus diadematus Cl Physiology and Behavior, 2004, 82, 519-529.	1.0	30
116	Graph theory illustrates spatial and temporal features that structure elephant rest locations and reflect risk perception. Ecography, 2017, 40, 598-605.	2.1	29
117	Comparison of the Spinning of Selachian Egg Case Ply Sheets and Orb Web Spider Dragline Filaments. Biomacromolecules, 2001, 2, 323-334.	2.6	28
118	Untangling the spider's web. Trends in Ecology and Evolution, 1988, 3, 331-335.	4.2	27
119	Spiders' webs. Current Biology, 2005, 15, R364-R365.	1.8	27
120	A novel marine silk. Die Naturwissenschaften, 2012, 99, 3-10.	0.6	26
121	Rheo-attenuated total reflectance infrared spectroscopy: a new tool to study biopolymers. Physical Chemistry Chemical Physics, 2011, 13, 3979.	1.3	25
122	Gravity as an orientation guide during web-construction in the orb spiderAraneus diadematus (Araneae, Araneidae). Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1986, 159, 275-280.	0.7	24
123	Breaking the 200 nm Limit for Routine Flow Linear Dichroism Measurements Using UV Synchrotron Radiation. Biophysical Journal, 2008, 95, 5974-5977.	0.2	24
124	Silk cocoons as natural macro-balloon fillers in novel polyurethane-based syntactic foams. Polymer, 2015, 56, 93-101.	1.8	24
125	Deformation micromechanics of spider silk. Journal of Materials Science, 2008, 43, 3728-3732.	1.7	23
126	Spinning a Marine Silk for the Purpose of Tube-Building. Journal of Crustacean Biology, 2012, 32, 191-202.	0.3	23

#	Article	IF	CITATIONS
127	Water mediated proton hopping empowers proteins. Soft Matter, 2013, 9, 643-646.	1.2	23
128	Spiders spinning electrically charged nano-fibres. Biology Letters, 2015, 11, 20140813.	1.0	23
129	Movement reveals reproductive tactics in male elephants. Journal of Animal Ecology, 2020, 89, 57-67.	1.3	23
130	A virtual robot to model the use of regenerated legs in a web-building spider. Animal Behaviour, 1999, 57, 223-232.	0.8	22
131	Conformational polymorphism, stability and aggregation in spider dragline silks proteins. International Journal of Biological Macromolecules, 2005, 36, 215-224.	3.6	22
132	Consequences of electrical conductivity in an orb spider's capture web. Die Naturwissenschaften, 2013, 100, 1163-1169.	0.6	22
133	Modern analysis of an ancient integrated farming arrangement: life cycle assessment of a mulberry dyke and pond system. International Journal of Life Cycle Assessment, 2015, 20, 1387-1398.	2.2	22
134	Unpicking the signal thread of the sector web spider <i>Zygiella x-notata</i> . Journal of the Royal Society Interface, 2015, 12, 20150633.	1.5	21
135	Cryogenic toughness of natural silk and a proposed structure–function relationship. Materials Chemistry Frontiers, 2019, 3, 2507-2513.	3.2	21
136	Influence of CO 2 on the micro-structural properties of spider dragline silk: X-ray microdiffraction results. Die Naturwissenschaften, 2004, 91, 30-33.	0.6	20
137	Wind speed affects prey-catching behaviour in an orb web spider. Die Naturwissenschaften, 2011, 98, 1063-1067.	0.6	20
138	The mechanical properties of the non-sticky spiral in <i>Nephila</i> orb webs (Araneae, Nephilidae). Journal of Experimental Biology, 2012, 215, 3362-9.	0.8	20
139	Brown Recluse Spider's Nanometer Scale Ribbons of Stiff Extensible Silk. Advanced Materials, 2013, 25, 7028-7032.	11.1	20
140	Fragrant genes help Damenwahl. Trends in Ecology and Evolution, 1995, 10, 307-308.	4.2	19
141	Investigating the rheological properties of native plant latex. Journal of the Royal Society Interface, 2014, 11, 20130847.	1.5	19
142	Spiral orientation ofAraneus diadematus orb webs built during vertical rotation. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1988, 162, 413-419.	0.7	18
143	A kinetic model for thermal degradation in polymers with specific application to proteins. Polymer, 2009, 50, 1814-1818.	1.8	18
144	Distinct structural and optical regimes in natural silk spinning. Biopolymers, 2012, 97, 368-373.	1.2	18

#	Article	IF	CITATIONS
145	Ivory as an Important Model Bioâ€composite. Curator, 2018, 61, 95-110.	0.2	16
146	Study on the microstructure of African wild silk cocoon shells and fibers. International Journal of Biological Macromolecules, 2012, 50, 63-68.	3.6	15
147	Artificial spinning of natural silk threads. Scientific Reports, 2019, 9, 15428.	1.6	15
148	Structure and properties of silk from the African wild silkmoth Gonometa postica reared indoors. Journal of Insect Science, 2014, 14, 36.	0.6	14
149	The biocomposite tube of a chaetopterid marine worm constructed with highly-controlled orientation of nanofilaments. Materials Science and Engineering C, 2015, 48, 408-415.	3.8	14
150	Mechanical and thermal degradation properties of silk from African wild silkmoths. Journal of Applied Polymer Science, 2013, 127, 289-297.	1.3	13
151	Hard X-ray nano-holotomography with a Fresnel zone plate. Optics Express, 2020, 28, 37514.	1.7	13
152	Sex-ratio adjustment in solitary and social spiders. Trends in Ecology and Evolution, 1992, 7, 326-327.	4.2	12
153	The Selfish Crouton. Behaviour, 1995, 132, 49-55.	0.4	12
154	Torn human rotator cuff tendons have reduced collagen thermal properties on differential scanning calorimetry. Journal of Orthopaedic Research, 2011, 29, 1938-1943.	1.2	12
155	Coiling of an elastic beam inside a disk: A model for spider-capture silk. International Journal of Non-Linear Mechanics, 2015, 75, 59-66.	1.4	12
156	Differential Scanning Calorimetry of Native Silk Feedstock. Macromolecular Bioscience, 2019, 19, 1800228.	2.1	11
157	Spinning conditions affect structure and properties of Nephila spider silk. MRS Bulletin, 2021, 46, 915-924.	1.7	10
158	Estimating elephant densities from wells and droppings in dried out riverbeds. African Journal of Ecology, 2005, 43, 312-319.	0.4	9
159	Rainfall pattern and nutrient content influences on African elephants' debarking behaviour in Samburu and Buffalo Springs National Reserves, Kenya. African Journal of Ecology, 2012, 50, 152-159.	0.4	9
160	Genital morphology of <i>Nephila edulis</i> : implications for sperm competition in spiders. Canadian Journal of Zoology, 1998, 76, 39-47.	0.4	9
161	The Elephant Evolved p53 Isoforms that Escape MDM2-Mediated Repression and Cancer. Molecular Biology and Evolution, 2022, 39, .	3.5	9
162	Seismic localization of elephant rumbles as a monitoring approach. Journal of the Royal Society Interface, 2021, 18, 20210264.	1.5	8

#	Article	IF	CITATIONS
163	Spider webs inspiring soft robotics. Journal of the Royal Society Interface, 2020, 17, 20200569.	1.5	8
164	Housing tubes from the marine worm <i>Chaetopterus</i> sp.: biomaterials with exceptionally broad thermomechanical properties. Journal of the Royal Society Interface, 2014, 11, 20140525.	1.5	7
165	Drop-on-coilable-fibre systems exhibit negative stiffness events and transitions in coiling morphology. Soft Matter, 2017, 13, 5509-5517.	1.2	7
166	Analysing the structure and glass transition behaviour of silks for archaeology and conservation. Journal of the Royal Society Interface, 2018, 15, 20170883.	1.5	7
167	Transient Expression of a Major Ampullate Spidroin 1 Gene Fragment from sp. in Mammalian Cells. Cancer Genomics and Proteomics, 2006, 3, 83-87.	1.0	7
168	Strain-dependent fractional molecular diffusion in humid spider silk fibres. Journal of the Royal Society Interface, 2016, 13, 20160506.	1.5	6
169	Functional flexibility in a spider's Orb Web. Journal of Experimental Biology, 2020, 223, .	0.8	6
170	The complexity of silk under the spotlight of synthetic biology. Biochemical Society Transactions, 2016, 44, 1151-1157.	1.6	5
171	Structural Diversity of Native Major Ampullate, Minor Ampullate, Cylindriform, and Flagelliform Silk Proteins in Solution. Biomacromolecules, 2020, 21, 3387-3393.	2.6	5
172	The <scp>r</scp> package <scp>enerscape</scp> : A general energy landscape framework for terrestrial movement ecology. Methods in Ecology and Evolution, 2022, 13, 60-67.	2.2	5
173	Polymer Fibers: Silk and Synthetic Polymers: Reconciling 100 Degrees of Separation (Adv. Mater. 1/2012). Advanced Materials, 2012, 24, 104-104.	11.1	2
174	Dynamic environments do not appear to constrain spider web building behaviour. Die Naturwissenschaften, 2021, 108, 20.	0.6	2
175	Extreme body size variability in the golden silk spider (Nephila edulis) does not extend to genitalia. , 2000, 251, 7.		2
176	Weaving our way towards a new generation of fibre-optic chemical sensors based on spider silk. , 2016, , .		1
177	Silk as a Biomimetic Ideal for Structural Polymers. , 2009, 21, 487.		1
178	Spider silk morphology for responsive materials. Materials Research Society Symposia Proceedings, 2013, 1498, 197-202.	0.1	0
179	Spider Silk: Brown Recluse Spider's Nanometer Scale Ribbons of Stiff Extensible Silk (Adv. Mater.) Tj ETQq1 1 0.7	84314 rgE 11.1	BT /Overlock

Biomining for mother nature's superlenses. , 2017, , .

#	Article	IF	CITATIONS
181	A Dimethylammonium-Induced Intermediate Phase Approach Towards Stable Formamidinium-Caesium-based Perovskite Solar Cells. , 0, , .		0
182	Anterior knee pain from the evolutionary perspective. Knee, 2021, 31, 1-10.	0.8	0
183	Spiderman silks – science and fiction. Biochemist, 2015, 37, 6-9.	0.2	0