
Ana M Casas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8848805/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hybrids Provide More Options for Fine-Tuning Flowering Time Responses of Winter Barley. Frontiers in Plant Science, 2022, 13, 827701.	1.7	1
2	Candidate genes underlying QTL for flowering time and their interactions in a wide spring barley (Hordeum vulgare L.) cross. Crop Journal, 2021, 9, 862-872.	2.3	6
3	Major flowering time genes of barley: allelic diversity, effects, and comparison with wheat. Theoretical and Applied Genetics, 2021, 134, 1867-1897.	1.8	41
4	Genomic Prediction of Grain Yield in a Barley MAGIC Population Modeling Genotype per Environment Interaction. Frontiers in Plant Science, 2021, 12, 664148.	1.7	5
5	Responses of Barley to High Ambient Temperature Are Modulated by Vernalization. Frontiers in Plant Science, 2021, 12, 776982.	1.7	10
6	Root Trait Diversity in Field Grown Durum Wheat and Comparison with Seedlings. Agronomy, 2021, 11, 2545.	1.3	6
7	Rachis brittleness in a hybrid–parent barley (Hordeum vulgare) breeding germplasm with different combinations at the nonâ€brittle rachis genes. Plant Breeding, 2020, 139, 317-327.	1.0	3
8	TB1: from domestication gene to tool for many trades. Journal of Experimental Botany, 2020, 71, 4621-4624.	2.4	9
9	Genetic diversity in developmental responses to light spectral quality in barley (Hordeum vulgare L.). BMC Plant Biology, 2020, 20, 207.	1.6	5
10	Durum Wheat Seminal Root Traits within Modern and Landrace Germplasm in Algeria. Agronomy, 2020, 10, 713.	1.3	9
11	Rapid On-Site Phenotyping via Field Fluorimeter Detects Differences in Photosynthetic Performance in a Hybrid—Parent Barley Germplasm Set. Sensors, 2020, 20, 1486.	2.1	21
12	Effects of Low Water Availability on Root Placement and Shoot Development in Landraces and Modern Barley Cultivars. Agronomy, 2020, 10, 134.	1.3	19
13	Harnessing Novel Diversity From Landraces to Improve an Elite Barley Variety. Frontiers in Plant Science, 2019, 10, 434.	1.7	28
14	Genotype by Environment Interaction and Adaptation. , 2019, , 29-71.		5
15	Fine-tuning of the flowering time control in winter barley: the importance of HvOS2 and HvVRN2 in non-inductive conditions. BMC Plant Biology, 2019, 19, 113.	1.6	14
16	Genetic association with highâ€resolution climate data reveals selection footprints in the genomes of barley landraces across the Iberian Peninsula. Molecular Ecology, 2019, 28, 1994-2012.	2.0	22
17	Resequencing theVrs1 gene in Spanish barley landraces revealed reversion of six-rowed to two-rowed spike. Molecular Breeding, 2018, 38, 1.	1.0	10
18	Assessing different barley growth habits under Egyptian conditions for enhancing resilience to climate change. Field Crops Research, 2018, 224, 67-75.	2.3	30

#	Article	IF	CITATIONS
19	Genotype by Environment Interaction and Adaptation. , 2018, , 1-44.		10
20	Analysis of Plant Pan-Genomes and Transcriptomes with GET_HOMOLOGUES-EST, a Clustering Solution for Sequences of the Same Species. Frontiers in Plant Science, 2017, 8, 184.	1.7	63
21	Large Differences in Gene Expression Responses to Drought and Heat Stress between Elite Barley Cultivar Scarlett and a Spanish Landrace. Frontiers in Plant Science, 2017, 8, 647.	1.7	54
22	A Cluster of Nucleotideâ€Binding Site–Leucineâ€Rich Repeat Genes Resides in a Barley Powdery Mildew Resistance Quantitative Trait Loci on 7HL. Plant Genome, 2016, 9, plantgenome2015.10.0101.	1.6	13
23	Identification of quantitative trait loci for agronomic traits contributed by a barley (Hordeum) Tj ETQq1 1 0.7843	814 rgBT / 0.9	Overlock 10
24	Selection footprints in barley breeding lines detected by combining genotyping-by-sequencing with reference genome information. Molecular Breeding, 2015, 35, 1.	1.0	7
25	BARLEYMAP: physical and genetic mapping of nucleotide sequences and annotation of surrounding loci in barley. Molecular Breeding, 2015, 35, 1.	1.0	91
26	HvFT1 polymorphism and effectââ,¬â€survey of barley germplasm and expression analysis. Frontiers in Plant Science, 2014, 5, 251.	1.7	49
27	Quantitative trait loci for agronomic traits in an elite barley population for Mediterranean conditions. Molecular Breeding, 2014, 33, 249-265.	1.0	52
28	Spanish barley landraces outperform modern cultivars at lowâ€productivity sites. Plant Breeding, 2014, 133, 218-226.	1.0	44
29	Fine mapping of the Rrs1 resistance locus against scald in two large populations derived from Spanish barley landraces. Theoretical and Applied Genetics, 2013, 126, 3091-3102.	1.8	30
30	Whole-genome analysis with SNPs from BOPA1 shows clearly defined groupings of Western Mediterranean, Ethiopian, and Fertile Crescent barleys. Genetic Resources and Crop Evolution, 2013, 60, 251-264.	0.8	15
31	Resistance to powdery mildew in one Spanish barley landrace hardly resembles other previously identified wild barley resistances. European Journal of Plant Pathology, 2013, 136, 459-468.	0.8	12
32	Developmental patterns of a large set of barley (<i>Hordeum vulgare</i>) cultivars in response to ambient temperature. Annals of Applied Biology, 2013, 162, 309-323.	1.3	14
33	Towards Positional Isolation of Three Quantitative Trait Loci Conferring Resistance to Powdery Mildew in Two Spanish Barley Landraces. PLoS ONE, 2013, 8, e67336.	1.1	14
34	Barley Adaptation: Teachings from Landraces Will Help to Respond to Climate Change. , 2013, , 327-337.		0
35	Quantitative Trait Loci and Candidate Loci for Heading Date in a Large Population of a Wide Barley Cross. Crop Science, 2012, 52, 2469-2480.	0.8	24
36	Fine mapping and comparative genomics integration of two quantitative trait loci controlling resistance to powdery mildew in a Spanish barley landrace. Theoretical and Applied Genetics, 2012, 124, 49-62.	1.8	25

#	Article	IF	CITATIONS
37	Progress in the Spanish National Barley Breeding Program. Spanish Journal of Agricultural Research, 2012, 10, 741.	0.3	18
38	Analysis of powdery mildew resistance in the Spanish barley core collection. Plant Breeding, 2011, 130, 195-202.	1.0	14
39	Development of a costâ€effective pyrosequencing approach for SNP genotyping in barley. Plant Breeding, 2011, 130, 394-397.	1.0	22
40	Introgression of an intermediate VRNH1 allele in barley (Hordeum vulgare L.) leads to reduced vernalization requirement without affecting freezing tolerance. Molecular Breeding, 2011, 28, 475-484.	1.0	20
41	HvFT1 (VrnH3) drives latitudinal adaptation in Spanish barleys. Theoretical and Applied Genetics, 2011, 122, 1293-1304.	1.8	43
42	Gene and QTL detection in a three-way barley cross under selection by a mixed model with kinship information using SNPs. Theoretical and Applied Genetics, 2011, 122, 1605-1616.	1.8	53
43	Resistance to powdery mildew in Spanish barley landraces is controlled by different sets of quantitative trait loci. Theoretical and Applied Genetics, 2011, 123, 1019-1028.	1.8	19
44	Adaptation of barley to mild winters: A role for PPDH2. BMC Plant Biology, 2011, 11, 164.	1.6	66
45	Expression analysis of vernalization and day-length response genes in barley (Hordeum vulgare L.) indicates that VRNH2 is a repressor of PPDH2 (HvFT3) under long days. Journal of Experimental Botany, 2011, 62, 1939-1949.	2.4	57
46	A model of the genetic differences in malting quality between European and North American barley cultivars based on a QTL study of the cross Triumphâ€f×â€fMorex. Plant Breeding, 2010, 129, 280-290.	1.0	16
47	Identification of quantitative trait loci for resistance to powdery mildew in a Spanish barley landrace. Molecular Breeding, 2010, 25, 581-592.	1.0	20
48	Screening the Spanish Barley Core Collection for disease resistance. Plant Breeding, 2010, 129, 45-52.	1.0	51
49	Genetic control of pre-heading phases and other traits related to development in a double-haploid barley (Hordeum vulgare L.) population. Field Crops Research, 2010, 119, 36-47.	2.3	51
50	Yield QTL affected by heading date in Mediterranean grown barley. Plant Breeding, 2009, 128, 46-53.	1.0	62
51	Molecular characterization and genetic diversity of Prunus rootstocks. Scientia Horticulturae, 2009, 120, 237-245.	1.7	36
52	Joint analysis for heading date QTL in small interconnected barley populations. Molecular Breeding, 2008, 21, 383-399.	1.0	29
53	Heading date QTL in a springÂ×Âwinter barley cross evaluated in Mediterranean environments. Molecular Breeding, 2008, 21, 455-471.	1.0	58
54	Patterns of genetic and eco-geographical diversity in Spanish barleys. Theoretical and Applied Genetics, 2008, 116, 271-282.	1.8	62

#	Article	IF	CITATIONS
55	Effects of photo and thermo cycles on flowering time in barley: a genetical phenomics approach. Journal of Experimental Botany, 2008, 59, 2707-2715.	2.4	47
56	Molecular characterization of Miraflores peach variety and relatives using SSRs. Scientia Horticulturae, 2007, 111, 140-145.	1.7	24
57	Molecular and Structural Characterization of Barley Vernalization Genes. Plant Molecular Biology, 2005, 59, 449-467.	2.0	258
58	Distribution of MWG699 polymorphism in Spanish European barleys. Genome, 2005, 48, 41-45.	0.9	10
59	Use of new EST markers to elucidate the genetic differences in grain protein content between European and North American two-rowed malting barleys. Theoretical and Applied Genetics, 2004, 110, 116-125.	1.8	31
60	Dormancy, ABA content and sensitivity of a barley mutant to ABA application during seed development and after ripening. Journal of Experimental Botany, 2001, 52, 1499-1506.	2.4	47
61	RFLP markers associated with major genes controlling heading date evaluated in a barley germ plasm pool. Heredity, 1999, 83, 551-559.	1.2	22
62	Genetic diversity of Prunus rootstocks analyzed by RAPD markers. Euphytica, 1999, 110, 139-149.	0.6	66
63	A mutant induced in the malting barley cv Triumph with reduced dormancy and ABA response. Theoretical and Applied Genetics, 1999, 98, 347-355.	1.8	27
64	Genetic diversity of barley cultivars grown in Spain, estimated by RFLP, similarity and coancestry coefficients. Plant Breeding, 1998, 117, 429-435.	1.0	20
65	Transgenic sorghum plants obtained after microprojectile bombardment of immature inflorescences. In Vitro Cellular and Developmental Biology - Plant, 1997, 33, 92-100.	0.9	53
66	Expression of Osmotin-Like Genes in the Halophyte Atriplex nummularia L. Plant Physiology, 1992, 99, 329-337.	2.3	37