
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8848718/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Stimuli-responsive bio-based polymeric systems and their applications. Journal of Materials Chemistry B, 2019, 7, 709-729.	2.9	487
2	Nanocellulose-Mediated Electroconductive Self-Healing Hydrogels with High Strength, Plasticity, Viscoelasticity, Stretchability, and Biocompatibility toward Multifunctional Applications. ACS Applied Materials & Interfaces, 2018, 10, 27987-28002.	4.0	420
3	Electrospun Nanofibers Membranes for Effective Air Filtration. Macromolecular Materials and Engineering, 2017, 302, 1600353.	1.7	418
4	Ecofriendly Electrospun Membranes Loaded with Visible-Light-Responding Nanoparticles for Multifunctional Usages: Highly Efficient Air Filtration, Dye Scavenging, and Bactericidal Activity. ACS Applied Materials & Interfaces, 2019, 11, 12880-12889.	4.0	323
5	A self-healable and highly flexible supercapacitor integrated by dynamically cross-linked electro-conductive hydrogels based on nanocellulose-templated carbon nanotubes embedded in a viscoelastic polymer network. Carbon, 2019, 149, 1-18.	5.4	280
6	Electrospun nanofiber membranes for wastewater treatment applications. Separation and Purification Technology, 2020, 250, 117116.	3.9	280
7	Green Electrospun Nanofibers and Their Application in Air Filtration. Macromolecular Materials and Engineering, 2018, 303, 1800336.	1.7	273
8	Biomass derived carbon as binder-free electrode materials for supercapacitors. Carbon, 2019, 155, 706-726.	5.4	273
9	Nature-inspired chemistry toward hierarchical superhydrophobic, antibacterial and biocompatible nanofibrous membranes for effective UV-shielding, self-cleaning and oil-water separation. Journal of Hazardous Materials, 2020, 384, 121476.	6.5	240
10	Multistructured Electrospun Nanofibers for Air Filtration: A Review. ACS Applied Materials & Interfaces, 2021, 13, 23293-23313.	4.0	237
11	Biomimetic Durable Multifunctional Self-Cleaning Nanofibrous Membrane with Outstanding Oil/Water Separation, Photodegradation of Organic Contaminants, and Antibacterial Performances. ACS Applied Materials & Interfaces, 2020, 12, 34999-35010.	4.0	202
12	Fabrication of highly durable and robust superhydrophobic-superoleophilic nanofibrous membranes based on a fluorine-free system for efficient oil/water separation. Journal of Membrane Science, 2019, 570-571, 303-313.	4.1	196
13	Photothermal nanofibres enable safe engineering of therapeutic cells. Nature Nanotechnology, 2021, 16, 1281-1291.	15.6	192
14	Stimuli-responsive electrospun fibers and their applications. Chemical Society Reviews, 2011, 40, 2417.	18.7	184
15	Bio-based electrospun nanofiber as building blocks for a novel eco-friendly air filtration membrane: A review. Separation and Purification Technology, 2021, 277, 119623.	3.9	182
16	Hydrothermal synthesized UV-resistance and transparent coating composited superoloephilic electrospun membrane for high efficiency oily wastewater treatment. Journal of Hazardous Materials, 2020, 383, 121152.	6.5	176
17	Electrospun fibers for oilâ \in "water separation. RSC Advances, 2016, 6, 12868-12884.	1.7	173
18	Electrospun Core–Shell Nanofibrous Membranes with Nanocellulose-Stabilized Carbon Nanotubes for Use as High-Performance Flexible Supercapacitor Electrodes with Enhanced Water Resistance, Thermal Stability, and Mechanical Toughness. ACS Applied Materials & Interfaces, 2019, 11, 44624-44635.	4.0	164

#	Article	IF	CITATIONS
19	Nanocellulose-templated assembly of polyaniline in natural rubber-based hybrid elastomers toward flexible electronic conductors. Industrial Crops and Products, 2019, 128, 94-107.	2.5	163
20	Flexible and transparent composite nanofibre membrane that was fabricated via a "green― electrospinning method for efficient particulate matter 2.5 capture. Journal of Colloid and Interface Science, 2021, 582, 506-514.	5.0	160
21	Bio-based and photocrosslinked electrospun antibacterial nanofibrous membranes for air filtration. Carbohydrate Polymers, 2019, 205, 55-62.	5.1	158
22	Dual pH- and ammonia-vapor-responsive electrospun nanofibrous membranes for oil-water separations. Journal of Membrane Science, 2017, 537, 128-139.	4.1	157
23	Durable superhydrophobic and superoleophilic electrospun nanofibrous membrane for oil-water emulsion separation. Journal of Colloid and Interface Science, 2018, 532, 12-23.	5.0	157
24	Electrospun cellulose acetate phthalate fibers for semen induced anti-HIV vaginal drug delivery. Biomaterials, 2012, 33, 962-969.	5.7	149
25	Effects of nanocellulose on the structure and properties of poly(vinyl alcohol)-borax hybrid foams. Cellulose, 2017, 24, 4433-4448.	2.4	149
26	Green electrospun and crosslinked poly(vinyl alcohol)/poly(acrylic acid) composite membranes for antibacterial effective air filtration. Journal of Colloid and Interface Science, 2018, 511, 411-423.	5.0	148
27	Polyimide/cellulose acetate core/shell electrospun fibrous membranes for oil-water separation. Separation and Purification Technology, 2017, 177, 71-85.	3.9	147
28	Stimuli-responsive nanobubbles for biomedical applications. Chemical Society Reviews, 2021, 50, 5746-5776.	18.7	141
29	Microstructures and mechanical properties of aligned electrospun carbon nanofibers from binary composites of polyacrylonitrile and polyamic acid. Journal of Materials Science, 2018, 53, 15096-15106.	1.7	138
30	Robust, functionalized reduced graphene-based nanofibrous membrane for contaminated water purification. Chemical Engineering Journal, 2021, 404, 126347.	6.6	134
31	Durable, self-healing superhydrophobic nanofibrous membrane with self-cleaning ability for highly-efficient oily wastewater purification. Journal of Membrane Science, 2021, 634, 119402.	4.1	132
32	Anisotropic nanocellulose aerogels with ordered structures fabricated by directional freeze-drying for fast liquid transport. Cellulose, 2019, 26, 6653-6667.	2.4	123
33	Electrospun frogspawn structured membrane for gravity-driven oil-water separation. Journal of Colloid and Interface Science, 2019, 547, 136-144.	5.0	118
34	Smart, Photothermally Activated, Antibacterial Surfaces with Thermally Triggered Bacteria-Releasing Properties. ACS Applied Materials & Interfaces, 2020, 12, 21283-21291.	4.0	116
35	Blow-spun nanofibrous composite Self-cleaning membrane for enhanced purification of oily wastewater. Journal of Colloid and Interface Science, 2022, 608, 2860-2869.	5.0	114
36	Lightweight, elastic and superhydrophobic multifunctional nanofibrous aerogel for self-cleaning, oil/water separation and pressure sensing. Chemical Engineering Journal, 2022, 430, 132989.	6.6	108

#	Article	IF	CITATIONS
37	High performance, environmentally friendly and sustainable nanofiber membrane filter for removal of particulate matter 1.0. Journal of Colloid and Interface Science, 2021, 597, 48-55.	5.0	107
38	pH responsive polyurethane (core) and cellulose acetate phthalate (shell) electrospun fibers for intravaginal drug delivery. Carbohydrate Polymers, 2016, 151, 1240-1244.	5.1	99
39	Multifunctional Applications of Blow-Spinning <i>Setaria viridis</i> Structured Fibrous Membranes in Water Purification. ACS Applied Materials & amp; Interfaces, 2021, 13, 22874-22883.	4.0	93
40	A novel xanthan gum-based conductive hydrogel with excellent mechanical, biocompatible, and self-healing performances. Carbohydrate Polymers, 2020, 247, 116743.	5.1	89
41	Magnetic Electrospun Fibers for Cancer Therapy. Advanced Functional Materials, 2012, 22, 2479-2486.	7.8	88
42	Gasâ€Shearing Fabrication of Multicompartmental Microspheres: A Oneâ€Step and Oilâ€Free Approach. Advanced Science, 2019, 6, 1802342.	5.6	87
43	Self-Healing and Superwettable Nanofibrous Membranes with Excellent Stability toward Multifunctional Applications in Water Purification. ACS Applied Materials & Interfaces, 2020, 12, 23644-23654.	4.0	86
44	Materials and Technologies to Combat Counterfeiting of Pharmaceuticals: Current and Future Problem Tackling. Advanced Materials, 2020, 32, e1905486.	11.1	84
45	Morphology engineering processed nanofibrous membranes with secondary structure for high-performance air filtration. Separation and Purification Technology, 2022, 294, 121093.	3.9	80
46	Temperature-induced molecular orientation and mechanical properties of single electrospun polyimide nanofiber. Materials Letters, 2018, 216, 81-83.	1.3	79
47	Nature-inspired creation of a robust free-standing electrospun nanofibrous membrane for efficient oil–water separation. Environmental Science: Nano, 2018, 5, 2909-2920.	2.2	73
48	Bio-based materials with special wettability for oil-water separation. Separation and Purification Technology, 2022, 297, 121445.	3.9	69
49	Core–sheath structured electrospun nanofibrous membranes for oil–water separation. RSC Advances, 2016, 6, 41861-41870.	1.7	62
50	Electrospun soyâ€proteinâ€based nanofibrous membranes for effective antimicrobial air filtration. Journal of Applied Polymer Science, 2018, 135, 45766.	1.3	60
51	Redox-responsive blend hydrogel films based on carboxymethyl cellulose/chitosan microspheres as dual delivery carrier. International Journal of Biological Macromolecules, 2019, 134, 413-421.	3.6	59
52	Unbreakable Codes in Electrospun Fibers: Digitally Encoded Polymers to Stop Medicine Counterfeiting. Advanced Materials, 2010, 22, 2657-2662.	11.1	58
53	Oregano essential oil/l²-cyclodextrin inclusion compound polylactic acid/polycaprolactone electrospun nanofibers for active food packaging. Chemical Engineering Journal, 2022, 445, 136746.	6.6	58
54	Triggered Release from Cellulose Microparticles Inspired by Wood Degradation by Fungi. ACS Sustainable Chemistry and Engineering, 2021, 9, 387-397.	3.2	53

#	Article	IF	CITATIONS
55	Core-shell microparticles: From rational engineering to diverse applications. Advances in Colloid and Interface Science, 2022, 299, 102568.	7.0	51
56	Effective method of chitosan-coated alginate nanoparticles for target drug delivery applications. Journal of Biomaterials Applications, 2016, 31, 3-12.	1.2	47
57	Design of a novel mitochondria targetable turn-on fluorescence probe for hydrogen peroxide and its two-photon bioimaging applications. Chinese Chemical Letters, 2020, 31, 3149-3152.	4.8	47
58	Multifunctional Gas-Spinning Hierarchical Architecture: A Robust and Efficient Nanofiber Membrane for Simultaneous Air and Water Contaminant Remediation. ACS Applied Polymer Materials, 2020, 2, 5686-5697.	2.0	45
59	Evaluation of toxicity of halloysite nanotubes and multi-walled carbon nanotubes to endothelial cells <i>inÂvitro</i> and blood vessels <i>inÂvivo</i> . Nanotoxicology, 2020, 14, 1017-1038.	1.6	44
60	Universal Antifouling and Photothermal Antibacterial Surfaces Based on Multifunctional Metal–Phenolic Networks for Prevention of Biofilm Formation. ACS Applied Materials & Interfaces, 2021, 13, 48403-48413.	4.0	44
61	A biocompatible and pH-responsive nanohydrogel based on cellulose nanocrystal for enhanced toxic reactive oxygen species generation. Carbohydrate Polymers, 2021, 258, 117685.	5.1	43
62	UV-fluorescence probe for detection Ni2+ with colorimetric/spectral dual-mode analysis method and its practical application. Bioorganic Chemistry, 2021, 114, 105103.	2.0	43
63	Fabrication of Sustained-release CA-PU Coaxial Electrospun Fiber Membranes for Plant Grafting Application. Carbohydrate Polymers, 2017, 169, 198-205.	5.1	41
64	Faithful Fabrication of Biocompatible Multicompartmental Memomicrospheres for Digitally Color‶unable Barcoding. Small, 2020, 16, e1907586.	5.2	41
65	Healable, Adhesive, and Conductive Nanocomposite Hydrogels with Ultrastretchability for Flexible Sensors. ACS Applied Materials & Interfaces, 2021, 13, 58048-58058.	4.0	40
66	Antibacterial and Effective Air Filtration Membranes by "Green―Electrospinning and Citric Acid Crosslinking. Colloids and Interface Science Communications, 2018, 23, 52-58.	2.0	39
67	Concentration Gradients in Material Sciences: Methods to Design and Biomedical Applications. Advanced Functional Materials, 2021, 31, 2009005.	7.8	38
68	Fluorescence detection of Escherichia coli on mannose modified ZnTe quantum dots. Chinese Chemical Letters, 2020, 31, 1504-1507.	4.8	35
69	Genistein-Derived ROS-Responsive Nanoparticles Relieve Colitis by Regulating Mucosal Homeostasis. ACS Applied Materials & Interfaces, 2021, 13, 40249-40266.	4.0	35
70	Fabrication of superhydrophobic electrospun polyimide nanofibers modified with polydopamine and polytetrafluoroethylene nanoparticles for oil–water separation. Journal of Applied Polymer Science, 2019, 136, 47638.	1.3	33
71	Dual-Functional Surfaces Based on an Antifouling Polymer and a Natural Antibiofilm Molecule: Prevention of Biofilm Formation without Using Biocides. ACS Applied Materials & Interfaces, 2021, 13, 45191-45200.	4.0	33
72	High strength and ultralight lignin-mediated fire-resistant aerogel for repeated oil/water separation. Carbon, 2022, 193, 285-297.	5.4	33

#	Article	IF	CITATIONS
73	"Turn-on―ratiometric fluorescent probe: Naked-eye detection of acidic pH and citric acid (CA) by using fluorescence spectrum and its application in real food samples and zebrafish. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 261, 120014.	2.0	32
74	Quaternized chitin/tannic acid bilayers layer-by-layer deposited poly(lactic acid)/polyurethane nanofibrous mats decorated with photoresponsive complex and silver nanoparticles for antibacterial activity. International Journal of Biological Macromolecules, 2022, 201, 448-457.	3.6	32
75	Gas-shearing synthesis of core–shell multicompartmental microparticles as cell-like system for enzymatic cascade reaction. Chemical Engineering Journal, 2022, 428, 132607.	6.6	31
76	Free-standing porous carbon nanofiber membranes obtained by one-step carbonization and activation for high-performance supercapacitors. Microporous and Mesoporous Materials, 2022, 329, 111545.	2.2	31
77	<i>In situ</i> growth of hierarchical Al ₂ O ₃ nanostructures onto TiO ₂ nanofibers surface: super-hydrophilicity, efficient oil/water separation and dye-removal. Nanotechnology, 2018, 29, 345607.	1.3	30
78	Graphene oxide size-dependently altered lipid profiles in THP-1 macrophages. Ecotoxicology and Environmental Safety, 2020, 199, 110714.	2.9	30
79	Electronic textiles based on aligned electrospun belt-like cellulose acetate nanofibers and graphene sheets: portable, scalable and eco-friendly strain sensor. Nanotechnology, 2019, 30, 045602.	1.3	29
80	Designable dual-power micromotors fabricated from a biocompatible gas-shearing strategy. Chemical Engineering Journal, 2021, 407, 127187.	6.6	29
81	MoS2 nanosheets and bulk materials altered lipid profiles in 3D Caco-2 spheroids. Chinese Chemical Letters, 2022, 33, 293-297.	4.8	28
82	Spatial confinement of multi-enzyme for cascade catalysis in cell-inspired all-aqueous multicompartmental microcapsules. Journal of Colloid and Interface Science, 2022, 626, 768-774.	5.0	28
83	Well-defined multifunctional superhydrophobic green nanofiber membrane based-polyurethane with inherent antifouling, antiadhesive and photothermal bactericidal properties and its application in bacteria, living cells and zebra fish. Composites Communications, 2021, 26, 100758.	3.3	25
84	PTX-loaded three-layer PLGA/CS/ALG nanoparticle based on layer-by-layer method for cancer therapy. Journal of Biomaterials Science, Polymer Edition, 2018, 29, 1566-1578.	1.9	23
85	Multi-walled carbon nanotubes (MWCNTs) transformed THP-1 macrophages into foam cells: Impact of pulmonary surfactant component dipalmitoylphosphatidylcholine. Journal of Hazardous Materials, 2020, 392, 122286.	6.5	22
86	Well-defined organic fluorescent nanomaterials with AIE characteristics for colorimetric/UV-vis/fluorescent multi-channel recognition of Zn ²⁺ with multiple applications in plant cells and zebrafish. Materials Chemistry Frontiers, 2021, 5, 4981-4988.	3.2	22
87	A Prussian blue alginate microparticles platform based on gas-shearing strategy for antitumor and antibacterial therapy. International Journal of Biological Macromolecules, 2022, 209, 794-800.	3.6	22
88	Titanate nanofibers reduce Kruppel-like factor 2 (KLF2)-eNOS pathway in endothelial monolayer: A transcriptomic study. Chinese Chemical Letters, 2021, 32, 1567-1570.	4.8	20
89	Electrospun polystyrene fibers for HIV entrapment. Polymers for Advanced Technologies, 2014, 25, 827-834.	1.6	19
90	Preparation of Single, Heteromorphic Microspheres, and Their Progress for Medical Applications. Macromolecular Materials and Engineering, 2021, 306, 2000593.	1.7	19

#	Article	IF	CITATIONS
91	A biomass-derived Schiff base material composited with polylactic acid nanofiber membrane as selective fluorescent â€`turn off/on' platform for Pb2+ quantitative detection and characterization. International Journal of Biological Macromolecules, 2022, 214, 414-425.	3.6	17
92	A novel preparation method of paclitaxcel-loaded folate-modified chitosan microparticles and in vitro evaluation. Journal of Biomaterials Science, Polymer Edition, 2016, 27, 276-289.	1.9	15
93	TiO2 nanosheets promote the transformation of vascular smooth muscle cells into foam cells in vitro and in vivo through the up-regulation of nuclear factor kappa B subunit 2. Journal of Hazardous Materials, 2022, 424, 127704.	6.5	14
94	Toxic reactive oxygen species enhanced chemodynamic therapy by copper metal-nanocellulose based nanocatalysts. Carbohydrate Polymers, 2022, 289, 119432.	5.1	14
95	A tunable temperature-responsive and tough platform for controlled drug delivery. New Journal of Chemistry, 2021, 45, 13056-13063.	1.4	13
96	Comparison of multi-walled carbon nanotubes and halloysite nanotubes on lipid profiles in human umbilical vein endothelial cells. NanoImpact, 2021, 23, 100333.	2.4	12
97	Encapsulated Microstructures of Beneficial Functional Lipids and Their Applications in Foods and Biomedicines. Journal of Agricultural and Food Chemistry, 2022, 70, 8165-8187.	2.4	12
98	The cytotoxicity of zinc oxide nanoparticles to 3D brain organoids results from excessive intracellular zinc ions and defective autophagy. Cell Biology and Toxicology, 2023, 39, 259-275.	2.4	11
99	Anthocyanins decrease the internalization of TiO2 nanoparticles into 3D Caco-2 spheroids. Food Chemistry, 2020, 331, 127360.	4.2	10
100	Light triggered nanoscale biolistics for efficient intracellular delivery of functional macromolecules in mammalian cells. Nature Communications, 2022, 13, 1996.	5.8	10
101	One stone two birds: a sinter-resistant TiO ₂ nanofiber-based unbroken mat enables PM capture and <i>in situ</i> elimination. Nanoscale, 2021, 13, 20564-20575.	2.8	9
102	Effects of epigallocatechin gallate on the stability, dissolution and toxicology of ZnO nanoparticles. Food Chemistry, 2022, 371, 131383.	4.2	5
103	Colorimetric/spectral dual-mode analysis of sensitive fluorescent probe based on 2,3,3-trimethyl-3H-benzo[e]indole detection of acid pH. Bioorganic Chemistry, 2022, 124, 105792.	2.0	5
104	Design and fabrication of cellulose derived free-standing carbon nanofiber membranes for high performance supercapacitors. Carbohydrate Polymer Technologies and Applications, 2021, 2, 100117.	1.6	4
105	Genistein-based reactive oxygen species-responsive nanomaterial site-specifically relieves the intestinal toxicity of endocrine-disrupting chemicals. International Journal of Pharmaceutics, 2022, 615, 121478.	2.6	1