Guan Heng Yeoh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8848414/publications.pdf

Version: 2024-02-01

309 papers 8,278 citations

45 h-index 91884 69 g-index

318 all docs

318 docs citations

318 times ranked

5774 citing authors

#	Article	IF	CITATIONS
1	Interface decoration of exfoliated MXene ultra-thin nanosheets for fire and smoke suppressions of thermoplastic polyurethane elastomer. Journal of Hazardous Materials, 2019, 374, 110-119.	12.4	301
2	On numerical modelling of low-pressure subcooled boiling flows. International Journal of Heat and Mass Transfer, 2002, 45, 1197-1209.	4.8	207
3	A Review of Hydrogen Direct Injection for Internal Combustion Engines: Towards Carbon-Free Combustion. Applied Sciences (Switzerland), 2019, 9, 4842.	2.5	204
4	MXene/chitosan nanocoating for flexible polyurethane foam towards remarkable fire hazards reductions. Journal of Hazardous Materials, 2020, 381, 120952.	12.4	174
5	Engineering MXene surface with POSS for reducing fire hazards of polystyrene with enhanced thermal stability. Journal of Hazardous Materials, 2021, 401, 123342.	12.4	151
6	Manufacturing, mechanical and flame retardant properties of poly(lactic acid) biocomposites based on calcium magnesium phytate and carbon nanotubes. Composites Part A: Applied Science and Manufacturing, 2018, 110, 227-236.	7.6	136
7	Fabrication and characterization of graphene-reinforced waterborne polyurethane nanocomposite coatings by the sol–gel method. Surface and Coatings Technology, 2012, 206, 4778-4784.	4.8	127
8	A combined transient thermal model for laser hyperthermia of tumors with embedded gold nanoshells. International Journal of Heat and Mass Transfer, 2011, 54, 5459-5469.	4.8	119
9	Flow-induced stress on adherent cells in microfluidic devices. Lab on A Chip, 2015, 15, 4114-4127.	6.0	111
10	Multifunctional MXene/natural rubber composite films with exceptional flexibility and durability. Composites Part B: Engineering, 2020, 188, 107875.	12.0	111
11	An overview of processes and considerations in the modelling of Afixed-bed biomass combustion. Energy, 2015, 88, 946-972.	8.8	106
12	Recent progress in bio-based aerogel absorbents for oil/water separation. Cellulose, 2019, 26, 6449-6476.	4.9	102
13	On the numerical study of isothermal vertical bubbly flow using two population balance approaches. Chemical Engineering Science, 2007, 62, 4659-4674.	3.8	99
14	Bubble departure frequency in forced convective subcooled boiling flow. International Journal of Heat and Mass Transfer, 2008, 51, 6268-6282.	4.8	93
15	Functionalization of MXene Nanosheets for Polystyrene towards High Thermal Stability and Flame Retardant Properties. Polymers, 2019, 11, 976.	4.5	93
16	Soot Volume Fraction and Morphology of Conventional, Fischer-Tropsch, Coal-Derived, and Surrogate Fuel at Diesel Conditions. SAE International Journal of Fuels and Lubricants, 0, 5, 647-664.	0.2	92
17	Modeling subcooled flow boiling in vertical channels at low pressures – Part 1: Assessment of empirical correlations. International Journal of Heat and Mass Transfer, 2014, 75, 736-753.	4.8	88
18	On the modelling of population balance in isothermal vertical bubbly flows—Average bubble number density approach. Chemical Engineering and Processing: Process Intensification, 2007, 46, 742-756.	3.6	83

#	Article	IF	Citations
19	Study on flame retarded flexible polyurethane foam/alumina aerogel composites with improved fire safety. Chemical Engineering Journal, 2017, 311, 310-317.	12.7	82
20	The Effect of Swirl Ratio and Fuel Injection Parameters on CO Emission and Fuel Conversion Efficiency for High-Dilution, Low-Temperature Combustion in an Automotive Diesel Engine., 0,,.		77
21	Population balance modelling for bubbly flows with heat and mass transfer. Chemical Engineering Science, 2004, 59, 3125-3139.	3.8	74
22	Synthesis of phosphorus-containing silane coupling agent for surface modification of glass fibers: Effective reinforcement and flame retardancy in poly(1,4-butylene terephthalate). Chemical Engineering Journal, 2017, 321, 257-267.	12.7	71
23	BODIPY coated on MXene nanosheets for improving mechanical and fire safety properties of ABS resin. Composites Part B: Engineering, 2021, 223, 109130.	12.0	70
24	Nanoparticles of polydopamine for improving mechanical and flame-retardant properties of an epoxy resin. Composites Part B: Engineering, 2020, 186, 107828.	12.0	70
25	On the numerical study of contaminant particle concentration in indoor airflow. Building and Environment, 2006, 41, 1504-1514.	6.9	67
26	Fundamental consideration of wall heat partition of vertical subcooled boiling flows. International Journal of Heat and Mass Transfer, 2008, 51, 3840-3853.	4.8	66
27	A unified model considering force balances for departing vapour bubbles and population balance in subcooled boiling flow. Nuclear Engineering and Design, 2005, 235, 1251-1265.	1.7	64
28	A novel polyurethane prepolymer as toughening agent: Preparation, characterization, and its influence on mechanical and flame retardant properties of phenolic foam. Journal of Applied Polymer Science, 2013, 128, 2720-2728.	2.6	62
29	Thermal hydraulic considerations of nuclear reactor systems: Past, present and future challenges. Experimental and Computational Multiphase Flow, 2019, 1, 3-27.	3.9	62
30	A review on polymer-based materials for underwater sound absorption. Polymer Testing, 2021, 96, 107115.	4.8	60
31	Numerical simulation of turbulent wake flows behind two side-by-side cylinders. Journal of Fluids and Structures, 2003, 18, 387-403.	3.4	59
32	A novel artificial neural network fire model for prediction of thermal interface location in single compartment fire. Fire Safety Journal, 2004, 39, 67-87.	3.1	58
33	Performance and emissions of hydrogen-diesel dual direct injection (H2DDI) in a single-cylinder compression-ignition engine. International Journal of Hydrogen Energy, 2021, 46, 1302-1314.	7.1	57
34	Two-fluid and population balance models for subcooled boiling flow. Applied Mathematical Modelling, 2006, 30, 1370-1391.	4.2	56
35	Liquid Penetration of Diesel and Biodiesel Sprays at Late-Cycle Post-Injection Conditions. SAE International Journal of Engines, 0, 3, 479-495.	0.4	55
36	A review on the development of nuclear power reactors. Energy Procedia, 2019, 160, 459-466.	1.8	54

3

#	Article	IF	Citations
37	Thermal-hydrodynamic modeling of bubbly flows with heat and mass transfer. AICHE Journal, 2005, 51, 8-27.	3.6	53
38	Modelling the pyrolysis of wet wood – I. Three-dimensional formulation and analysis. International Journal of Heat and Mass Transfer, 2007, 50, 4371-4386.	4.8	53
39	Structural evolution of soot particles during diesel combustion in a single-cylinder light-duty engine. Combustion and Flame, 2015, 162, 2720-2728.	5.2	53
40	Fundamental spray and combustion measurements of soy methyl-ester biodiesel. International Journal of Engine Research, 2013, 14, 373-390.	2.3	51
41	Utilising genetic algorithm to optimise pyrolysis kinetics for fire modelling and characterisation of chitosan/graphene oxide polyurethane composites. Composites Part B: Engineering, 2020, 182, 107619.	12.0	51
42	Transient Liquid Penetration of Early-Injection Diesel Sprays. SAE International Journal of Engines, 2009, 2, 785-804.	0.4	50
43	An algorithm to calculate interfacial area for multiphase mass transfer through the volume-of-fluid method. International Journal of Heat and Mass Transfer, 2016, 100, 573-581.	4.8	50
44	Numerical investigation on the velocity fields during droplet formation in a microfluidic T-junction. Chemical Engineering Science, 2016, 139, 99-108.	3.8	50
45	Air staging strategies in biomass combustion-gaseous and particulate emission reduction potentials. Fuel Processing Technology, 2017, 157, 29-41.	7.2	50
46	Modelling of natural convection in vertical and tilted photovoltaic applications. Energy and Buildings, 2012, 55, 810-822.	6.7	49
47	A Review on Lithium-Ion Battery Separators towards Enhanced Safety Performances and Modelling Approaches. Molecules, 2021, 26, 478.	3.8	49
48	Importance of detailed chemical kinetics on combustion and soot modelling of ventilated and under-ventilated fires in compartment. International Journal of Heat and Mass Transfer, 2016, 96, 171-188.	4.8	48
49	Enhanced mechanical and barrier properties of polyurethane nanocomposite films with randomly distributed molybdenum disulfide nanosheets. Composites Science and Technology, 2016, 127, 142-148.	7.8	47
50	Synthesis of anhydrous manganese hypophosphite microtubes for simultaneous flame retardant and mechanical enhancement on poly(lactic acid). Composites Science and Technology, 2018, 164, 44-50.	7.8	47
51	Population balance modeling of bubbly flows considering the hydrodynamics and thermomechanical processes. AICHE Journal, 2008, 54, 1689-1710.	3.6	46
52	Preparation of UV-curable functionalized graphene/polyurethane acrylate nanocomposite with enhanced thermal and mechanical behaviors. Reactive and Functional Polymers, 2013, 73, 854-858.	4.1	46
53	Influence of Fuel Injection Timing and Pressure on In-Flame Soot Particles in an Automotive-Size Diesel Engine. Environmental Science & Enchnology, 2014, 48, 8243-8250.	10.0	46
54	Numerical modelling of bubbly flows with and without heat and mass transfer. Applied Mathematical Modelling, 2006, 30, 1067-1095.	4.2	45

#	Article	IF	CITATIONS
55	Novel 3D Network Architectured Hybrid Aerogel Comprising Epoxy, Graphene, and Hydroxylated Boron Nitride Nanosheets. ACS Applied Materials & Samp; Interfaces, 2018, 10, 40032-40043.	8.0	45
56	Effect of intake air temperature and common-rail pressure on ethanol combustion in a single-cylinder light-duty diesel engine. Fuel, 2016, 180, 9-19.	6.4	44
57	Combustion characterization of waste cooking oil and canola oil based biodiesels under simulated engine conditions. Fuel, 2018, 224, 167-177.	6.4	44
58	Fire Risk Assessment of Combustible Exterior Cladding Using a Collective Numerical Database. Fire, 2019, 2, 11.	2.8	44
59	Numerical studies of indoor airflow and particle dispersion by large Eddy simulation. Building and Environment, 2007, 42, 3483-3492.	6.9	42
60	A fully-coupled simulation of vortical structures in a large-scale buoyant pool fire. International Journal of Thermal Sciences, 2009, 48, 2187-2202.	4.9	42
61	Gas–liquid flows in medium and large vertical pipes. Chemical Engineering Science, 2011, 66, 872-883.	3.8	42
62	Automated Detection of Primary Particles from Transmission Electron Microscope (TEM) Images of Soot Aggregates in Diesel Engine Environments. SAE International Journal of Engines, 0, 9, 279-296.	0.4	42
63	Stationary bathtub vortices and a critical regime of liquid discharge. Journal of Fluid Mechanics, 2008, 604, 77-98.	3.4	41
64	Three-dimensional modelling of fluid flow and heat transfer in micro-channels with synthetic jet. International Journal of Heat and Mass Transfer, 2012, 55, 198-213.	4.8	41
65	On DEM–CFD study of the dynamic characteristics of high speed micro-abrasive air jet. Powder Technology, 2014, 267, 161-179.	4.2	41
66	Prediction of temperature and velocity profiles in a single compartment fire by an improved neural network analysis. Fire Safety Journal, 2006, 41, 478-485.	3.1	40
67	Heat transfer enhancement in micro-channel with multiple synthetic jets. Applied Thermal Engineering, 2012, 48, 275-288.	6.0	39
68	Modeling of bubble size distribution in isothermal gasâ€"liquid flows: Numerical assessment of population balance approaches. Nuclear Engineering and Design, 2013, 265, 120-136.	1.7	39
69	Modeling subcooled flow boiling in vertical channels at low pressures – Part 2: Evaluation of mechanistic approach. International Journal of Heat and Mass Transfer, 2014, 75, 754-768.	4.8	39
70	Comparison of detailed soot formation models for sooty and non-sooty flames in an under-ventilated ISO room. International Journal of Heat and Mass Transfer, 2017, 115, 717-729.	4.8	39
71	Establishing pyrolysis kinetics for the modelling of the flammability and burning characteristics of solid combustible materials. Journal of Fire Sciences, 2018, 36, 494-517.	2.0	39
72	Alginate/Polymer-Based Materials for Fire Retardancy: Synthesis, Structure, Properties, and Applications. Polymer Reviews, 2021, 61, 357-414.	10.9	38

#	Article	IF	Citations
73	Mechanical and thermal properties of phenolic/glass fiber foam modified with phosphorus ontaining polyurethane prepolymer. Polymer International, 2013, 62, 273-279.	3.1	37
74	Surface Manipulation of Thermal-Exfoliated Hexagonal Boron Nitride with Polyaniline for Improving Thermal Stability and Fire Safety Performance of Polymeric Materials. ACS Omega, 2018, 3, 14942-14952.	3.5	37
75	Predicting the fire spread rate of a sloped pine needle board utilizing pyrolysis modelling with detailed gas-phase combustion. International Journal of Heat and Mass Transfer, 2018, 125, 310-322.	4.8	36
76	Numerical modelling and validation of gas-particle flow in an in-line tube bank. Computers and Chemical Engineering, 2007, 31, 1064-1072.	3.8	34
77	Large-eddy simulation of natural convection in an asymmetrically-heated vertical parallel-plate channel: Assessment of subgrid-scale models. Computers and Fluids, 2012, 59, 101-116.	2.5	34
78	Uncertainty in Sampling and TEM Analysis of Soot Particles in Diesel Spray Flame., 0,,.		34
79	Numerical Simulation and Validation of Dilute Gas-Particle Flow Over a Backward-Facing Step. Aerosol Science and Technology, 2005, 39, 319-332.	3.1	33
80	Numerical study of fire spread using the level-set method with large eddy simulation incorporating detailed chemical kinetics gas-phase combustion model. Journal of Computational Science, 2018, 24, 8-23.	2.9	33
81	Numerical investigation into the effects of wall roughness on a gas–particle flow in a 90° bend. International Journal of Heat and Mass Transfer, 2008, 51, 1238-1250.	4.8	32
82	Numerical and experimental investigation of unsteady natural convection in a non-uniformly heated vertical open-ended channel. International Journal of Thermal Sciences, 2016, 99, 9-25.	4.9	32
83	On the influences of key modelling constants of large eddy simulations forÂlarge-scale compartment fires predictions. International Journal of Computational Fluid Dynamics, 2017, 31, 324-337.	1.2	32
84	CFD Studies of Indoor Airflow and Contaminant Particle Transportation. Particulate Science and Technology, 2007, 25, 555-570.	2.1	31
85	The shortening of lift-off length associated with jet–wall and jet–jet interaction in a small-bore optical diesel engine. Fuel, 2014, 125, 1-14.	6.4	31
86	Spray and Combustion Investigation of Post Injections under Low-Temperature Combustion Conditions with Biodiesel. Energy & Energy	5.1	31
87	An investigation on thermal performance of wollastonite and bentonite reinforced intumescent fire-retardant coating for steel structures. Construction and Building Materials, 2019, 228, 116734.	7.2	31
88	A numerical study of three-dimensional natural convection during freezing of water. International Journal for Numerical Methods in Engineering, 1990, 30, 899-914.	2.8	30
89	Flickering Behavior of Turbulent Buoyant Fires Using Large-Eddy Simulation. Numerical Heat Transfer; Part A: Applications, 2007, 52, 679-712.	2.1	30
90	Fire scene investigation of an arson fire incident using computational fluid dynamics based fire simulation. Building Simulation, 2014, 7, 477-487.	5.6	30

#	Article	IF	Citations
91	Automated determination of size and morphology information from soot transmission electron microscope (TEM)-generated images. Journal of Nanoparticle Research, 2016, 18, 1.	1.9	30
92	Numerical study of the development and angular speed of a small-scale fire whirl. Journal of Computational Science, 2018, 27, 21-34.	2.9	30
93	NUMERICAL SIMULATION OF AN ENCLOSURE FIRE IN A LARGE TEST HALL. Computational Thermal Sciences, 2013, 5, 459-471.	0.9	30
94	On modelling combustion, radiation and soot processes in compartment fires. Building and Environment, 2003, 38, 771-785.	6.9	29
95	Pectin-assisted dispersion of exfoliated boron nitride nanosheets for assembled bio-composite aerogels. Composites Part A: Applied Science and Manufacturing, 2019, 119, 196-205.	7.6	29
96	Study of three LES subgrid-scale turbulence models for predictions of heat and mass transfer in large-scale compartment fires. Numerical Heat Transfer; Part A: Applications, 2016, 69, 1223-1241.	2.1	28
97	Emissions characteristics of NO x and SO 2 in the combustion of microalgae biomass using a tube furnace. Journal of the Energy Institute, 2017, 90, 806-812.	5.3	28
98	An experimental study into the effect of air staging distribution and position on emissions in a laboratory scale biomass combustor. Energy, 2017, 118, 1243-1255.	8.8	28
99	A study of the micro-hole geometry evolution on glass by abrasive air-jet micromachining. Journal of Manufacturing Processes, 2018, 31, 156-161.	5.9	28
100	Effects of flame-plane wall impingement on diesel combustion and soot processes. Fuel, 2019, 255, 115726.	6.4	28
101	Fire-retarded nanocomposite aerogels for multifunctional applications: A review. Composites Part B: Engineering, 2022, 237, 109866.	12.0	28
102	On numerical comparison of enclosure fire in a multi-compartment building. Fire Safety Journal, 2003, 38, 85-94.	3.1	27
103	Contribution of soot particles on global radiative heat transfer in a two-compartment fire. Fire Safety Journal, 2004, 39, 412-428.	3.1	27
104	Effect of freeboard deflectors in the fixed bed combustion of biomass. Applied Thermal Engineering, 2016, 103, 543-552.	6.0	27
105	Visualization of hydrogen jet evolution and combustion under simulated direct-injection compression-ignition engine conditions. International Journal of Hydrogen Energy, 2020, 45, 32562-32578.	7.1	27
106	PDMS/MWCNT nanocomposite films for underwater sound absorption applications. Journal of Materials Science, 2020, 55, 5048-5063.	3.7	27
107	Evaluating the fire risk associated with cladding panels: An overview of fire incidents, policies, and future perspective in fire standards. Fire and Materials, 2021, 45, 663-689.	2.0	27
108	A numerical and experimental study of natural convection and interface shape in crystal growth. Journal of Crystal Growth, 1997, 173, 492-502.	1.5	26

#	Article	IF	CITATIONS
109	A Study of Particle Rebounding Characteristics of a Gas–Particle Flow over a Curved Wall Surface. Aerosol Science and Technology, 2004, 38, 739-755.	3.1	26
110	Experimental and numerical study on the hemodynamics of stenosed carotid bifurcation. Australasian Physical and Engineering Sciences in Medicine, 2010, 33, 319-328.	1.3	26
111	Numerical investigation of passive cooling in open vertical channels. Applied Thermal Engineering, 2012, 39, 121-131.	6.0	26
112	Numerical Simulation of a Ceiling Jet Fire in a Large Compartment. Procedia Engineering, 2013, 52, 3-12.	1.2	26
113	Transient analysis of a single rising bubble used for numerical validation for multiphase flow. Chemical Engineering Science, 2014, 112, 25-34.	3.8	26
114	Influence of turbulent fluctuations on radiation heat transfer, NO and soot formation under ECN Spray A conditions. Proceedings of the Combustion Institute, 2017, 36, 3551-3558.	3.9	26
115	Modeling combustion under engine combustion network Spray A conditions with multiple injections using the transported probability density function method. International Journal of Engine Research, 2017, 18, 6-14.	2.3	26
116	Comparative Studies on Thermal, Mechanical, and Flame Retardant Properties of PBT Nanocomposites via Different Oxidation State Phosphorus-Containing Agents Modified Amino-CNTs. Nanomaterials, 2018, 8, 70.	4.1	26
117	Critical assessment on operating water droplet sizes for fire sprinkler and water mist systems. Journal of Building Engineering, 2020, 28, 100999.	3.4	26
118	Characterization of choking flow behaviors inside steam ejectors based on the ejector refrigeration system. International Journal of Refrigeration, 2020, 113, 296-307.	3.4	26
119	Characterisation of pyrolysis kinetics and detailed gas species formations of engineering polymers via reactive molecular dynamics (ReaxFF). Journal of Analytical and Applied Pyrolysis, 2021, 153, 104931.	5 . 5	26
120	Synthesis of zinc porphyrin complex for improving mechanical, UV-resistance, thermal stability and fire safety properties of polystyrene. Chemical Engineering Journal, 2022, 442, 136367.	12.7	26
121	Integration of Computational Fluid Dynamics and Artificial Neural Network for Optimization Design of Battery Thermal Management System. Batteries, 2022, 8, 69.	4.5	26
122	Principal characteristics of turbulent gas-particulate flow in the vicinity of single tube and tube bundle structure. Chemical Engineering Science, 2004, 59, 3141-3157.	3.8	25
123	Large-Eddy Simulation of Turbulent Natural Convection in Vertical Parallel-Plate Channels. Numerical Heat Transfer, Part B: Fundamentals, 2011, 59, 259-287.	0.9	25
124	On the prediction of the phase distribution of bubbly flow in a horizontal pipe. Chemical Engineering Research and Design, 2012, 90, 40-51.	5.6	25
125	Effect of after injections on late cycle soot oxidation in a small-bore diesel engine. Combustion and Flame, 2018, 191, 513-526.	5.2	25
126	Numerical investigation on the thermal management of lithium-ion battery system and cooling effect optimization. Applied Thermal Engineering, 2022, 215, 118966.	6.0	25

#	Article	IF	Citations
127	Underwater sound absorption properties of polydimethylsiloxane/carbon nanotube composites with steel plate backing. Applied Acoustics, 2021, 171, 107668.	3.3	24
128	Experimental and numerical perspective on the fire performance of MXene/Chitosan/Phytic acid coated flexible polyurethane foam. Scientific Reports, 2021, 11, 4684.	3.3	24
129	Development of an evacuation model considering the impact of stress variation on evacuees under fire emergency. Safety Science, 2021, 138, 105232.	4.9	24
130	Fire and smoke distribution in a twoâ€room compartment structure. International Journal of Numerical Methods for Heat and Fluid Flow, 2002, 12, 178-194.	2.8	23
131	The influence of gaps of fire-resisting doors on the smoke spread in a building fire. Fire Safety Journal, 2006, 41, 539-546.	3.1	23
132	Fire scene reconstruction of a furnished compartment room in a house fire. Case Studies in Fire Safety, 2014, 1, 29-35.	1.0	23
133	LES and Multi-Step Chemical Reaction in Compartment Fires. Numerical Heat Transfer; Part A: Applications, 2015, 68, 711-736.	2.1	23
134	Improved volume-of-fluid (VOF) model for predictions of velocity fields and droplet lengths in microchannels. Flow Measurement and Instrumentation, 2016, 51, 105-115.	2.0	23
135	PREDICTION AND MEASUREMENT OF LOCAL TWO-PHASE FLOW PARAMETERS IN A BOILING FLOW CHANNEL. Numerical Heat Transfer; Part A: Applications, 2002, 42, 173-192.	2.1	21
136	Flow structure generated by two synthetic jets in a channel: Effect of phase and frequency. Sensors and Actuators A: Physical, 2012, 184, 98-111.	4.1	21
137	The Effect of Gold Nanorods Clustering on Near-Infrared Radiation Absorption. Applied Sciences (Switzerland), 2018, 8, 1132.	2.5	21
138	Fire-Resistant Flexible Polyurethane Foams via Nature-Inspired Chitosan-Expandable Graphite Coatings. ACS Applied Polymer Materials, 2021, 3, 4079-4087.	4.4	21
139	COMBUSTION AND HEAT TRANSFER IN COMPARTMENT FIRES. Numerical Heat Transfer; Part A: Applications, 2002, 42, 153-172.	2.1	20
140	Capturing coalescence and break-up processes in vertical gas–liquid flows: Assessment of population balance methods. Applied Mathematical Modelling, 2013, 37, 8557-8577.	4.2	20
141	Size Distribution and Structure of Wall-Deposited Soot Particles in an Automotive-Size Diesel Engine. SAE International Journal of Fuels and Lubricants, 2013, 6, 605-614.	0.2	20
142	External irradiation effect on the growth and evolution of in-flame soot species. Carbon, 2016, 102, 161-171.	10.3	20
143	Effect of jet–jet interactions on soot formation in a small-bore diesel engine. Proceedings of the Combustion Institute, 2017, 36, 3559-3566.	3.9	20
144	Flame–Wall Interaction Effects on Diesel Post-injection Combustion and Soot Formation Processes. Energy & Samp; Fuels, 2019, 33, 7759-7769.	5.1	20

#	Article	IF	Citations
145	Natural Ventilated Smoke Control Simulation Case Study Using Different Settings of Smoke Vents and Curtains in a Large Atrium. Fire, 2019, 2, 7.	2.8	20
146	Modelling the pyrolysis of wet wood $\hat{a}\in$ "II. Three-dimensional cone calorimeter simulation. International Journal of Heat and Mass Transfer, 2007, 50, 4387-4399.	4.8	19
147	Classification of bubbles in vertical gas–liquid flow: Part 1 – An analysis of experimental data. International Journal of Multiphase Flow, 2012, 39, 121-134.	3.4	19
148	Effect of micro-nano additives on breakdown, surface tracking and mechanical performance of ethylene propylene diene monomer for high voltage insulation. Journal of Materials Science: Materials in Electronics, 2019, 30, 14061-14071.	2.2	19
149	Computational Study of Wet Steam Flow to Optimize Steam Ejector Efficiency for Potential Fire Suppression Application. Applied Sciences (Switzerland), 2019, 9, 1486.	2.5	18
150	Color-ratio pyrometry methods for flame–wall impingement study. Journal of the Energy Institute, 2019, 92, 1968-1976.	5. 3	18
151	Investigation of door width towards flame tilting behaviours and combustion species in compartment fire scenarios using large eddy simulation. International Journal of Heat and Mass Transfer, 2020, 150, 119373.	4.8	18
152	Improved flame-retardant properties of polydimethylsiloxane/multi-walled carbon nanotube nanocomposites. Journal of Materials Science, 2021, 56, 2192-2211.	3.7	18
153	Implementation of a Two-Phase Boiling Model into the RELAP5/MOD2 Computer Code to Predict Void Distribution in Low-Pressure Subcooled Boiling Flows. Nuclear Science and Engineering, 2002, 140, 181-188.	1.1	17
154	On Population Balance Approach for Subcooled Boiling Flow Prediction. Journal of Heat Transfer, 2005, 127, 253-264.	2.1	17
155	Numerical simulation of the migration of hot gases in open vertical shaft. Applied Thermal Engineering, 2008, 28, 478-487.	6.0	17
156	Classification of bubbles in vertical gas–liquid flow: Part 2 – A model evaluation. International Journal of Multiphase Flow, 2012, 39, 135-147.	3.4	17
157	A CFD-based comparative analysis of drying in various single biomass particles. Applied Thermal Engineering, 2018, 128, 1062-1073.	6.0	17
158	Study of structure morphology and layer thickness of Ti3C2 MXene with Small-Angle Neutron Scattering (SANS). Composites Part C: Open Access, 2021, 5, 100155.	3.2	17
159	Experimental and computational studies of compartment fire behavior training scenarios. Building and Environment, 2010, 45, 2620-2628.	6.9	16
160	On the numerical study of bubbly flow created by ventilated cavity in vertical pipe. International Journal of Multiphase Flow, 2011, 37, 756-768.	3.4	16
161	On numerical study of calcium sulphate fouling under sub-cooled flow boiling conditions. Applied Thermal Engineering, 2015, 81, 18-27.	6.0	16
162	Characterisation of soot particle size distribution through population balance approach and soot diagnostic techniques for a buoyant non-premixed flame. Journal of the Energy Institute, 2020, 93, 112-128.	5.3	16

#	Article	IF	CITATIONS
163	Synergistic effect of additives on electrical resistivity, fire and smoke suppression of silicone rubber for high voltage insulation. Composites Communications, 2022, 29, 101045.	6.3	16
164	Numerical investigation of static flow instability in a low-pressure subcooled boiling channel. Heat and Mass Transfer, 2004, 40, 355-364.	2.1	15
165	Modeling the Response of Magnetorheological Fluid Dampers under Seismic Conditions. Applied Sciences (Switzerland), 2019, 9, 4189.	2.5	15
166	Flow patterns and pressure gradient correlation for oil–water core–annular flow in horizontal pipes. Experimental and Computational Multiphase Flow, 2020, 2, 99-108.	3.9	15
167	Simulation of competitive and cooperative egress movements on the crowd emergency evacuation. Simulation Modelling Practice and Theory, 2021, 109, 102309.	3.8	15
168	On void fraction distribution during two-phase boiling flow instability. International Journal of Heat and Mass Transfer, 2004, 47, 413-417.	4.8	14
169	Study of Morphology and Optical Properties of Gold Nanoparticle Aggregates under Different pH Conditions. Langmuir, 2018, 34, 10340-10352.	3.5	14
170	Enhanced dielectric and thermal performance by fabricating coalesced network of alumina trihydrate/boron nitride in silicone rubber for electrical insulation. Bulletin of Materials Science, 2020, 43, 1.	1.7	14
171	Capturing the Pulsation Frequency of a Buoyant Pool Fire using the Large Eddy Simulation Approach. Numerical Heat Transfer; Part A: Applications, 2007, 53, 561-576.	2.1	13
172	Application of dynamic global-coefficient subgrid-scale models to turbulent natural convection in an enclosed tall cavity. Physics of Fluids, 2012, 24, .	4.0	13
173	Twoâ€Dimensional Computational Analysis of Microbubbles in Hemodialysis. Artificial Organs, 2013, 37, E139-44.	1.9	13
174	A CFD model for the coupling of multiphase, multicomponent and mass transfer physics for micro-scale simulations. International Journal of Heat and Mass Transfer, 2017, 113, 922-934.	4.8	13
175	Simulation and Experimental Investigation on Carbonized Tracking Failure of EPDM/BN-Based Electrical Insulation. Polymers, 2020, 12, 582.	4.5	13
176	Multiphase CFD modelling for enclosure fires—A review on past studies and future perspectives. Experimental and Computational Multiphase Flow, 2022, 4, 1-25.	3.9	13
177	NUMERICAL AND EXPERIMENTAL INVESTIGATION OF UNSTEADY NATURAL CONVECTION IN A VERTICAL OPEN-ENDED CHANNEL. Computational Thermal Sciences, 2012, 4, 443-456.	0.9	13
178	Developing a solid decomposition kinetics extraction framework for detailed chemistry pyrolysis and combustion modelling of building polymer composites. Journal of Analytical and Applied Pyrolysis, 2022, 163, 105500.	5.5	13
179	A Review of Population Balance Modelling for Isothermal Bubbly Flows. Journal of Computational Multiphase Flows, 2009, 1, 161-199.	0.8	12
180	Comparison of the VOF and CLSVOF Methods in Interface Capturing of a Rising Bubble. Journal of Computational Multiphase Flows, 2013, 5, 43-55.	0.8	12

#	Article	IF	CITATIONS
181	On Computational Fluid Dynamics Study of Magnetic Drug Targeting. Journal of Computational Multiphase Flows, 2015, 7, 43-56.	0.8	12
182	Effect of freeboard deflectors on the temperature distribution inÂpacked beds. Applied Thermal Engineering, 2015, 89, 134-143.	6.0	12
183	A rapid co-culture stamping device for studying intercellular communication. Scientific Reports, 2016, 6, 35618.	3.3	12
184	Numerical Modeling of Magnetic Nanoparticle and Carrier Fluid Interactions Under Static and Double-Shear Flows. IEEE Nanotechnology Magazine, 2017, 16, 798-805.	2.0	12
185	Flame Retardancy and Excellent Electrical Insulation Performance of RTV Silicone Rubber. Polymers, 2021, 13, 2854.	4.5	12
186	An Investigation towards Coupling Molecular Dynamics with Computational Fluid Dynamics for Modelling Polymer Pyrolysis. Molecules, 2022, 27, 292.	3.8	12
187	Comparative Analysis of Coalescence and Breakage Kernels in Vertical Gas‣iquid Flow. Canadian Journal of Chemical Engineering, 2015, 93, 1295-1310.	1.7	11
188	Influence of Eddy-Generation Mechanism on the Characteristic of On-Source Fire Whirl. Applied Sciences (Switzerland), 2019, 9, 3989.	2.5	11
189	Ignition and flame stabilisation of primary reference fuel sprays at engine-relevant conditions. Combustion and Flame, 2021, 233, 111620.	5. 2	11
190	A Three-dimensional Mathematical Model For The Pyrolysis Of Wet Wood. Fire Safety Science, 1997, 5, 189-200.	0.3	11
191	A Numerical Model for Pilot Ignition of PMMA in a Cone Calorimeter. Combustion Science and Technology, 1997, 129, 321-345.	2.3	10
192	A Comparative Analysis on the Spray Penetration of Ethanol, Gasoline and Iso-Octane Fuel in a Spark-Ignition Direct-Injection Engine. , 0, , .		10
193	Numerical investigation of formation and dissolution of CO2 bubbles within silicone oil in a cross-junction microchannel. Microfluidics and Nanofluidics, 2017, 21, 1.	2.2	10
194	Study of Ignition and Combustion Characteristics of Consecutive Injections with <i>i>o</i> -Octane and <i>n</i> -Heptane as Fuels. Energy &	5.1	10
195	A novel stochastic approach to study water droplet/flame interaction of water mist systems. Numerical Heat Transfer; Part A: Applications, 2021, 79, 570-593.	2.1	10
196	Large-eddy simulation of turbulent buoyancy-driven flow in a rectangular cavity. International Journal of Heat and Fluid Flow, 2013, 39, 28-41.	2.4	9
197	The intersection marker method for 3D interface tracking of deformable surfaces in finite volumes. International Journal for Numerical Methods in Fluids, 2016, 81, 220-244.	1.6	9
198	Methodologies for Processing Fixed Bed Combustor Data. Combustion Science and Technology, 2017, 189, 79-102.	2.3	9

#	Article	IF	Citations
199	Effects of radiation on turbulent natural convection in channel flows. International Journal of Heat and Fluid Flow, 2019, 77, 122-133.	2.4	9
200	Co-Combustion Characteristics and Kinetics of Microalgae <i>Chlorella Vulgaris</i> and Coal through TGA. Combustion Science and Technology, 2020, 192, 26-45.	2.3	9
201	Morphology and internal structure of soot particles under the influence of jet–swirl and jet–jet interactions in a diesel combustion environment. Combustion and Flame, 2020, 214, 25-36.	5.2	9
202	Numerical investigation of expandable graphite suppression on metal-based fire. Heat and Mass Transfer, 2022, 58, 65-81.	2.1	9
203	Computational investigation of particle penetration and deposition pattern in a realistic respiratory tract model from different types of dry powder inhalers. International Journal of Pharmaceutics, 2022, 612, 121293.	5.2	9
204	Pyrolysis and combustion characterisation of HDPE/APP composites via molecular dynamics and CFD simulations. Journal of Analytical and Applied Pyrolysis, 2022, 163, 105499.	5.5	9
205	A BUBBLE MECHANISTIC MODEL FOR SUBCOOLED BOILING FLOW PREDICTIONS. Numerical Heat Transfer, Part B: Fundamentals, 2004, 45, 475-493.	0.9	8
206	Particle and bubble dynamics in a creeping flow. European Journal of Mechanics, B/Fluids, 2009, 28, 619-629.	2.5	8
207	Computational fluid dynamics and population balance modelling of nucleate boiling of cryogenic liquids: Theoretical developments. Journal of Computational Multiphase Flows, 2016, 8, 178-200.	0.8	8
208	An Investigation of Hole Machining Process on a Carbon-Fiber Reinforced Plastic Sheet by Abrasive Waterjet. Advanced Materials Research, 0, 1136, 113-118.	0.3	8
209	Bubble flow simulations using the intersection marker (ISM) interface tracking method. International Journal of Numerical Methods for Heat and Fluid Flow, 2018, 28, 118-137.	2.8	8
210	Application of LED-based thermographic phosphorescent technique to diesel combustion chamber walls in a pre-burn-type optical constant-volume vessel. Experiments in Fluids, 2019, 60, 1.	2.4	8
211	Sensitivity Analysis of Key Parameters for Population Balance Based Soot Model for Low-Speed Diffusion Flames. Energies, 2019, 12, 910.	3.1	8
212	Burgers–Rott vortices with surface tension. Zeitschrift Fur Angewandte Mathematik Und Physik, 2008, 59, 1057-1068.	1.4	7
213	Assessment of Interface Capturing Methods in Computational Fluid Dynamics (CFD) Codes — A Case Study. Journal of Computational Multiphase Flows, 2009, 1, 201-215.	0.8	7
214	Study of Isothermal Vertical Bubbly Flow Using Direct Quadrature Method of Moments. Journal of Computational Multiphase Flows, 2012, 4, 23-39.	0.8	7
215	A Steam Ejector Refrigeration System Powered by Engine Combustion Waste Heat: Part 2. Understanding the Nature of the Shock Wave Structure. Applied Sciences (Switzerland), 2019, 9, 4435.	2.5	7
216	A Numerical Investigation of Mixture Formation and Combustion Characteristics of a Hydrogen-Diesel Dual Direct Injection Engine. , 0, , .		7

#	Article	IF	Citations
217	A parametric study of autoigniting hydrogen jets under compression-ignition engine conditions. International Journal of Hydrogen Energy, 2022, 47, 21307-21322.	7.1	7
218	Population balance models for subcooled boiling flows. International Journal of Numerical Methods for Heat and Fluid Flow, 2008, 18, 160-172.	2.8	6
219	Modelling Horizontal Gas-Liquid Flow Using Averaged Bubble Number Density Approach. Journal of Computational Multiphase Flows, 2010, 2, 89-99.	0.8	6
220	Natural Convection in a PV-Integrated Double-Skin Façade using Large-Eddy Simulation. Procedia Engineering, 2011, 14, 3277-3284.	1.2	6
221	Comparative Large Eddy Simulation study of a large-scale buoyant fire. Heat and Mass Transfer, 2011, 47, 1197-1208.	2.1	6
222	Numerical Computation and Investigation of the Characteristics of Microscale Synthetic Jets. Modelling and Simulation in Engineering, 2011, 2011, 1-8.	0.7	6
223	Large Eddy Simulation of turbulent buoyancy-driven flow withÂalternating staggered heating walls. Applied Thermal Engineering, 2015, 89, 558-568.	6.0	6
224	Impact characteristics and stagnation formation on a solid surface by a supersonic abrasive waterjet. International Journal of Extreme Manufacturing, 2019, 1, 045004.	12.7	6
225	Spray and Combustion Characteristics of Gasoline-like Fuel under Compression-Ignition Conditions. Energy & Ener	5.1	6
226	Numerical Study of the Comparison of Symmetrical and Asymmetrical Eddy-Generation Scheme on the Fire Whirl Formulation and Evolution. Applied Sciences (Switzerland), 2020, 10, 318.	2.5	6
227	Wet or dry multifunctional coating prepared by visible light polymerisation with fire retardant, thermal protective, and antimicrobial properties. Cellulose, 2021, 28, 8821-8840.	4.9	6
228	A Large-Eddy Simulation study on the effect of fuel configuration and pan distance towards chemical species for under-ventilated compartment fire scenario. International Journal of Heat and Mass Transfer, 2022, 184, 122306.	4.8	6
229	Thermal-hydraulic modelling of the Cold Neutron Source thermosiphon system. Annals of Nuclear Energy, 2016, 90, 135-147.	1.8	5
230	High order accurate dual-phase-lag numerical model for microscopic heating in multiple domains. International Communications in Heat and Mass Transfer, 2016, 78, 21-28.	5.6	5
231	Effect of heat loss on turbulent buoyancy-driven flow in a rectangular cavity using the large-eddy simulation. Numerical Heat Transfer; Part A: Applications, 2016, 70, 689-706.	2.1	5
232	A Steam Ejector Refrigeration System Powered by Engine Combustion Waste Heat: Part 1. Characterization of the Internal Flow Structure. Applied Sciences (Switzerland), 2019, 9, 4275.	2.5	5
233	Numerical investigation on the bubble size distribution around NACA0015 hydrofoil. Ocean Engineering, 2019, 172, 59-71.	4.3	5
234	Capturing the Swirling Vortex and the Impact of Ventilation Conditions on Small-Scale Fire Whirls. Applied Sciences (Switzerland), 2020, 10, 3428.	2.5	5

#	Article	IF	CITATIONS
235	Effects of expandable graphite on char morphology and pyrolysis of epoxy based intumescent fireâ€retardant coating. Journal of Applied Polymer Science, 2021, 138, 51206.	2.6	5
236	Numerical assessment of LES subgrid-scale turbulence models for expandable particles in fire suppression. Experimental and Computational Multiphase Flow, 2023, 5, 99-110.	3.9	5
237	EFFECT OF VARIABLE PROPERTIES ON HEAT TRANSFER IN A MICRO-CHANNEL WITH A SYNTHETIC JET. Computational Thermal Sciences, 2013, 5, 369-388.	0.9	5
238	A systematic approach to formulate numerical kinetics for furnishing materials fire simulation with validation procedure using cone/FT-IR data. Heat and Mass Transfer, 0, , 1.	2.1	5
239	Peanut Shell Derived Carbon Combined with Nano Cobalt: An Effective Flame Retardant for Epoxy Resin. Molecules, 2021, 26, 6662.	3.8	5
240	Laser ignition of iso-octane and n-heptane jets under compression-ignition conditions. Fuel, 2022, 311, 122555.	6.4	5
241	Computational Fluid Dynamic Analysis of a Vibrating Turbine Blade. International Journal of Rotating Machinery, 2012, 2012, 1-15.	0.8	4
242	Simulation of Blood Flow and Nanoparticle Transport in a Stenosed Carotid Bifurcation and Pseudo-Arteriole. Journal of Computational Multiphase Flows, 2012, 4, 85-101.	0.8	4
243	Effectiveness of microbubble removal in an airtrap with a free surface interface. Journal of Biomechanics, 2015, 48, 1237-1240.	2.1	4
244	Investigation of the Influence of Elevated Pressure on Subcooled Boiling Flow—Model Evaluation Toward Generic Approach. Journal of Heat Transfer, 2017, 139, .	2.1	4
245	Perturbation scheme for estimating uncertainties in thermal scattering cross sections of water. Annals of Nuclear Energy, 2018, 121, 232-249.	1.8	4
246	Real-time monitoring of heat transfer between gold nanoparticles and tethered bilayer lipid membranes. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183334.	2.6	4
247	Heat Generation in Irradiated Gold Nanoparticle Solutions for Hyperthermia Applications. Processes, 2021, 9, 368.	2.8	4
248	Modeling Vertical Subcooled Boiling Flows at Low Pressures. Journal of ASTM International, 2011, 8, 1-20.	0.2	4
249	Three-dimensional numerical simulation of air-flow in inkjet print-zones. International Journal of Heat and Fluid Flow, 2022, 93, 108911.	2.4	4
250	A Study of Drag Force in Isothermal Bubbly Flow. Journal of Computational Multiphase Flows, 2009, 1, 295-309.	0.8	3
251	On the Prediction of Bubble Size Distribution and Void Fraction in Vertical Gas-Liquid Flows. Journal of Computational Multiphase Flows, 2012, 4, 1-22.	0.8	3
252	Data Mining on Fire Records of New South Wales, Sydney. Procedia Engineering, 2014, 71, 328-332.	1.2	3

#	Article	IF	Citations
253	Numerical modelling of magnetic nanoparticle and carrier fluid interactions. , 2016, , .		3
254	CFD investigation of sub-cooled boiling flow using a mechanistic wall heat partitioning approach with Wet-Steam properties. Journal of Computational Multiphase Flows, 2018, 10, 239-258.	0.8	3
255	3-Way coupled thermohydraulic-discrete element-neutronic simulation of solid fuel, molten salt reactor. Annals of Nuclear Energy, 2020, 135, 106973.	1.8	3
256	Numerical modeling of wet steam infused fluid mixture for potential fire suppression applications. Experimental and Computational Multiphase Flow, 2023, 5, 142-148.	3.9	3
257	Tethered Bilayer Lipid Membranes to Monitor Heat Transfer between Gold Nanoparticles and Lipid Membranes. Journal of Visualized Experiments, 2020, , .	0.3	3
258	A multiphase approach for pyrolysis modelling of polymeric materials. Experimental and Computational Multiphase Flow, 0, , 1.	3.9	3
259	Synergistic effects of tubular halloysite clay and zirconium phosphate on thermal behavior of intumescent coating for structural steel. Journal of Materials Research and Technology, 2022, 18, 4456-4469.	5.8	3
260	Sensitivity study on three different SN order schemes of the discrete ordinates method for two-compartment enclosure fire. Fire Safety Journal, 2005, 40, 736-744.	3.1	2
261	Improvement of Low-Pressure Subcooled Boiling Models in RELAP/MOD3.2 Code for Predicting Flow Instability. Nuclear Science and Engineering, 2006, 152, 118-124.	1.1	2
262	Computational Fluid Dynamics and Its Applications 2012. Modelling and Simulation in Engineering, 2012, 2012, 1-2.	0.7	2
263	Natural Convection in an Asymmetrically-Heated Open-Ended Channel: A Three-Dimensional Computational Study. , 2013, , .		2
264	Is comparison with experimental data a reasonable method of validating computational models?. Journal of Physics: Conference Series, 2016, 745, 032022.	0.4	2
265	Controlling the clustering behavior of particulate colloidal systems using alternating and rotating magnetic fields. Computational Particle Mechanics, 0 , , 1 .	3.0	2
266	Numerical study on using vortex flow to improve smoke exhaust efficiency in large-scale atrium fires. Indoor and Built Environment, 2023, 32, 98-115.	2.8	2
267	Three-Dimensional Simulation of Vapor Bubble Growth in Superheated Water Due to the Convective Action by an Interface Tracking Method. Journal of Fluids Engineering, Transactions of the ASME, 2022, 144, .	1.5	2
268	Heat Generation in Gold Nanorods Solutions due to Absorption of Near-Infrared Radiation. , 2017, , .		2
269	Thermal Performance of Nanofluids in Microchannel Equipped with a Synthetic Jet Actuator., 2014,,.		2
270	Basic Theory and Conceptual Framework of Multiphase Flows. , 2016, , 1-47.		2

#	Article	IF	Citations
271	Optimization of swirler type dry powder inhaler device design – Numerical investigation on the effect of dimple shape, inlet configuration and mouthpiece constriction. Journal of Aerosol Science, 2022, 159, 105893.	3.8	2
272	Soot: A review of computational models at different length scales. Experimental and Computational Multiphase Flow, 2023, 5, 1-14.	3.9	2
273	Structure evolution of nanodiamond aggregates: a SANS and USANS study. Journal of Applied Crystallography, 2022, 55, 353-361.	4.5	2
274	Atomistic characterisation of graphite oxidation and thermal decomposition mechanism under isothermal and Non-Isothermal heating scheme. Computational Materials Science, 2022, 210, 111458.	3.0	2
275	Numerical Study on the Turbulent Flow Structures of a Buoyant Pool Fire. , 2010, , .		1
276	Modelling of Polydispersed Flows using Two Population Balance Approaches. , 2010, , .		1
277	Effects of Operating Frequency of a Synthetic Jet and Cross Flow Velocity on the Heat Transfer Enhancement in a Micro-Channel. , 2013, , .		1
278	Investigation of the 3D Flow in Hemodialysis Venous Air Traps. Applied Mechanics and Materials, 0, 553, 156-161.	0.2	1
279	Numerical Study of Bubbly Flow Using the Second-Order Moment Turbulence Model and the Population Balance Method. Numerical Heat Transfer; Part A: Applications, 2015, 68, 1220-1241.	2.1	1
280	Using CFD as Preventative Maintenance Tool for the Cold Neutron Source Thermosiphon System. Science and Technology of Nuclear Installations, 2016, 2016, 1-11.	0.8	1
281	Three-dimensional modeling of flow and deformation in idealized mild and moderate arterial vessels. Computer Methods in Biomechanics and Biomedical Engineering, 2016, 19, 1395-1408.	1.6	1
282	Editorial – Australian Journal of Mechanical Engineering. Australian Journal of Mechanical Engineering, 2017, 15, 1-1.	2.1	1
283	Numerical investigation on the performance of coalescence and break-up kernels in subcooled boiling flows in vertical channels. Journal of Computational Multiphase Flows, 2017, 9, 71-85.	0.8	1
284	Investigation on Dry Band Arcing Induced Tracking Failure on Nanocomposites of EPDM Matrix. , 2019, , .		1
285	"Slower is Faster―by Considering of Give-way Evacuation Behavior. , 2019, , .		1
286	Numerical Study of Surface Regression of a Flame Retarded Expandable Polystrene. Lecture Notes in Civil Engineering, 2020, , 149-158.	0.4	1
287	Gravity-Driven Bubble Rise Simulation. , 2019, , 1-37.		1
288	Advances in Computational Fluid Dynamics and Its Applications. Modelling and Simulation in Engineering, 2011, 2011, 1-3.	0.7	0

#	Article	IF	CITATIONS
289	Modelling isothermal bubbly-cap flows using two-group averaged bubble number density approach. , 2012, , .		O
290	Development of Two-Dimensional Bubble Movement and Development Benchmark Dataset for Numerical Validation. , 2012, , .		0
291	Forced Convection in Micro-Channel With Synthetic Jet: Effect of Operating Frequency., 2012,,.		0
292	Experimental development and control of magnetorheological damper towards smart energy absorption of composite structures. Proceedings of SPIE, 2013, , .	0.8	0
293	Development of Wall-Adapting Local Eddy Viscosity Model for Study of Fire Dynamics in a Large Compartment. Applied Mechanics and Materials, 0, 444-445, 1579-1591.	0.2	0
294	Multiphase Flow System with Suspended Particles. Advances in Mechanical Engineering, 2014, 6, 792050.	1.6	0
295	Australian Journal of Mechanical Engineering. Australian Journal of Mechanical Engineering, 2017, 15, 73-73.	2.1	0
296	Australian Journal of Mechanical Engineering. Australian Journal of Mechanical Engineering, 2018, 16, 1-1.	2.1	0
297	Flooding prediction of counter-current flow in a vertical tube with non-axisymmetric disturbance waves. Annals of Nuclear Energy, 2018, 114, 616-623.	1.8	O
298	Special Issue on Nanofluids and Their Applications. Applied Sciences (Switzerland), 2019, 9, 1476.	2.5	0
299	In Memoriam - Graham de Vahl Davis. International Journal of Heat and Mass Transfer, 2020, 152, 119486.	4.8	0
300	Numerical Investigation of Rising Vapour Bubble in Convective Boiling Using an Advanced 3D Hybrid Numerical Method., 0, , .		0
301	Numerical Investigation of Flow Instability in a Low-Pressure Subcooled Boiling Channel. , 2003, , 559-564.		0
302	Three-Dimensional Modelling of Heat Transfer in Micro-Channels With Synthetic Jet. , 2010, , .		0
303	Modeling Vertical Subcooled Boiling Flows at Low Pressures. , 2012, , 349-375.		0
304	Modeling Vertical Subcooled Boiling Flows at Low Pressures. , 2012, , 349-375.		0
305	EFFECT OF CHANNEL PRESSURE DIFFERENCE IN HEAT TRANSFER ENHANCEMENT IN MICRO-CHANNEL WITH SYNTHETIC JET., 2012, , .		0
306	LARGE EDDY SIMULATION OF FIRE IN A LARGE TEST HALL. , 2012, , .		0

#	Article	IF	CITATIONS
307	NUMERICAL AND EXPERIMENTAL INVESTIGATION OF UNSTEADY NATURAL CONVECTION IN AN OPEN CHANNEL. , 2012, , .		O
308	A NUMERICAL STUDY OF THREE-DIMENSIONAL NATURAL CONVECTION AND FREEZING IN WATER. , $1992,,640-650$.		0
309	Electrical Field Modeling and Tracking Performance of RTV Silicone Rubber Composite Insulation. , 2020, , .		O