Stavros Ntalampiras

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8848198/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Edge Computing for Vision-Based, Urban-Insects Traps in the Context of Smart Cities. Sensors, 2022, 22, 2006.	3.8	8
2	A perceptual measure for evaluating the resynthesis of automatic music transcriptions. Multimedia Tools and Applications, 2022, 81, 32371-32391.	3.9	3
3	Automatic acoustic identification of respiratory diseases. Evolving Systems, 2021, 12, 69-77.	3.9	8
4	One-shot learning for acoustic identification of bird species in non-stationary environments. , 2021, , .		5
5	TreeVibes: Modern Tools for Global Monitoring of Trees for Borers. Smart Cities, 2021, 4, 271-285.	9.4	13
6	Acoustic detection of unknown bird species and individuals. CAAI Transactions on Intelligence Technology, 2021, 6, 291-300.	8.1	18
7	Speech emotion recognition via learning analogies. Pattern Recognition Letters, 2021, 144, 21-26.	4.2	18
8	Acoustic classification of individual cat vocalizations in evolving environments. , 2021, , .		4
9	Language-agnostic speech anger identification. , 2021, , .		2
10	One-shot learning for acoustic diagnosis of industrial machines. Expert Systems With Applications, 2021, 178, 114984.	7.6	18
11	CatMeows: A Publicly-Available Dataset of Cat Vocalizations. Lecture Notes in Computer Science, 2021, , 230-243.	1.3	4
12	Automatic acoustic classification of feline sex. , 2021, , .		5
13	Acoustic Classification of Cat Breed Based on Time and Frequency Domain Features. , 2021, , .		3
14	Automatic Acoustic Diagnosis of Heartbeats. , 2021, , .		1
15	Audio-to-Score Alignment Using Deep Automatic Music Transcription. , 2021, , .		5
16	Identification of Anomalous Phonocardiograms Based on Universal Probabilistic Modeling. IEEE Letters of the Computer Society, 2020, 3, 50-53.	1.0	2
17	Collaborative framework for automatic classification of respiratory sounds. IET Signal Processing, 2020, 14, 223-228.	1.5	14
18	Emotional quantification of soundscapes by learning between samples. Multimedia Tools and Applications, 2020, 79, 30387-30395.	3.9	5

#	Article	IF	CITATIONS
19	What's in a Meow? A Study on Human Classification and Interpretation of Domestic Cat Vocalizations. Animals, 2020, 10, 2390.	2.3	13
20	A Concept Drift-Aware DAG-Based Classification Scheme for Acoustic Monitoring of Farms. International Journal of Embedded and Real-Time Communication Systems, 2020, 11, 62-75.	0.5	2
21	Deep Learning of Attitude in Children's Emotional Speech. , 2020, , .		1
22	Toward Language-Agnostic Speech Emotion Recognition. AES: Journal of the Audio Engineering Society, 2020, 68, 7-13.	1.0	18
23	Preservation and Promotion of Opera Cultural Heritage: The Experience of La Scala Theatre. Lecture Notes in Computer Science, 2020, , 325-337.	1.3	1
24	Automatic Classification of Cat Vocalizations Emitted in Different Contexts. Animals, 2019, 9, 543.	2.3	12
25	Multimodal Music Information Processing and Retrieval: Survey and Future Challenges. , 2019, , .		28
26	Automatic acoustic classification of insect species based on directed acyclic graphs. Journal of the Acoustical Society of America, 2019, 145, EL541-EL546.	1.1	17
27	Classification of Sounds Indicative of Respiratory Diseases. Communications in Computer and Information Science, 2019, , 93-103.	O.5	5
28	A Statistical Inference Framework for Understanding Music-Related Brain Activity. IEEE Journal on Selected Topics in Signal Processing, 2019, 13, 275-284.	10.8	16
29	Multimodal Music Information Processing and Retrieval: Survey and Future Challenges. , 2019, , .		4
30	A Multispectral Backscattered Light Recorder of Insects' Wingbeats. Electronics (Switzerland), 2019, 8, 277.	3.1	16
31	Unsupervised Spectral Clustering of Music-Related Brain Activity. , 2019, , .		1
32	Generalized Sound Recognition in Reverberant Environments. AES: Journal of the Audio Engineering Society, 2019, 67, 772-781.	1.0	10
33	Fusing Acoustic and Electroencephalographic Modalities for User-Independent Emotion Prediction. , 2019, , .		2
34	On Acoustic Monitoring of Farm Environments. Communications in Computer and Information Science, 2019, , 53-63.	0.5	3
35	Bird species identification via transfer learning from music genres. Ecological Informatics, 2018, 44, 76-81.	5.2	32
36	Moving Vehicle Classification Using Wireless Acoustic Sensor Networks. IEEE Transactions on Emerging Topics in Computational Intelligence, 2018, 2, 129-138.	4.9	34

STAVROS NTALAMPIRAS

#	Article	IF	CITATIONS
37	A Classification Scheme Based on Directed Acyclic Graphs for Acoustic Farm Monitoring. , 2018, , .		6
38	Forecasting Mobile Service Demands for Anticipatory MEC. , 2018, , .		18
39	Transfer Learning for Improved Audio-Based Human Activity Recognition. Biosensors, 2018, 8, 60.	4.7	10
40	A transfer learning framework for predicting the emotional content of generalized sound events. Journal of the Acoustical Society of America, 2017, 141, 1694-1701.	1.1	26
41	Model-Free Fault Detection and Isolation in Large-Scale Cyber-Physical Systems. IEEE Transactions on Emerging Topics in Computational Intelligence, 2017, 1, 61-71.	4.9	56
42	Hybrid framework for categorising sounds of Mysticete whales. IET Signal Processing, 2017, 11, 349-355.	1.5	5
43	Emotion Prediction of Sound Events Based on Transfer Learning. Communications in Computer and Information Science, 2017, , 303-313.	0.5	Ο
44	Designing HMMs in the Age of Big Data. Advances in Intelligent Systems and Computing, 2017, , 120-130.	0.6	1
45	A Deep Learning Framework for Classifying Sounds of Mysticete Whales. , 2017, , 403-415.		2
46	Gaussian Mixture Modeling for Detecting Integrity Attacks in Smart Grids. Electronics (Switzerland), 2016, 5, 82.	3.1	2
47	Online model-free sensor fault identification and dictionary learning in Cyber-Physical Systems. , 2016, , .		4
48	An incremental learning mechanism for human activity recognition. , 2016, , .		8
49	Automatic identification of integrity attacks in cyber-physical systems. Expert Systems With Applications, 2016, 58, 164-173.	7.6	43
50	Automatic Fault Identification in Sensor Networks Based on Probabilistic Modeling. Lecture Notes in Computer Science, 2016, , 344-354.	1.3	0
51	Fault Diagnosis for Smart Grids in Pragmatic Conditions. IEEE Transactions on Smart Grid, 2016, , 1-1.	9.0	20
52	Automatic analysis of audiostreams in the concept drift environment. , 2016, , .		12
53	Faults and Cyber Attacks Detection in Critical Infrastructures. Lecture Notes in Computer Science, 2016, , 283-289.	1.3	8
54	Audio Pattern Recognition of Baby Crying Sound Events. AES: Journal of the Audio Engineering Society, 2015, 63, 358-369.	1.0	29

STAVROS NTALAMPIRAS

#	Article	IF	CITATIONS
55	Fault Identification in Distributed Sensor Networks Based on Universal Probabilistic Modeling. IEEE Transactions on Neural Networks and Learning Systems, 2015, 26, 1939-1949.	11.3	27
56	A fault diagnosis system for interdependent critical infrastructures based on HMMs. Reliability Engineering and System Safety, 2015, 138, 73-81.	8.9	24
57	Detection of Integrity Attacks in Cyber-Physical Critical Infrastructures Using Ensemble Modeling. IEEE Transactions on Industrial Informatics, 2015, 11, 104-111.	11.3	80
58	Analysis of Critical Infrastructure Network Failure in the European Union: A Combined Systems Engineering and Economic Model. Networks and Spatial Economics, 2015, 15, 253-270.	1.6	28
59	Directed Acyclic Graphs for Content Based Sound, Musical Genre, and Speech Emotion Classification. Journal of New Music Research, 2014, 43, 173-182.	0.8	13
60	Universal background modeling for acoustic surveillance of urban traffic. , 2014, 31, 69-78.		28
61	PROMETHEUS: heterogeneous sensor database in support of research on human behavioral patterns in unrestricted environments. Signal, Image and Video Processing, 2014, 8, 1211-1231.	2.7	6
62	Automatic bird sound detection in long real-field recordings: Applications and tools. Applied Acoustics, 2014, 80, 1-9.	3.3	144
63	Evaluating the Resilience of Critical Infrastructures Assessing Interdependencies and Economic Impact: The Role of Inventories. , 2014, , .		0
64	A Cognitive Fault Diagnosis System for Distributed Sensor Networks. IEEE Transactions on Neural Networks and Learning Systems, 2013, 24, 1213-1226.	11.3	55
65	A Novel Holistic Modeling Approach for Generalized Sound Recognition. IEEE Signal Processing Letters, 2013, 20, 185-188.	3.6	22
66	Temporal/spatial model-based fault diagnosis vs. Hidden Markov models change detection method: Application to the Barcelona water network. , 2013, , .		3
67	Rock collapse forecasting: A novel approach based on the classification of micro-acoustic signals in the wavelet domain. , 2013, , .		1
68	Model ensemble for an effective on-line reconstruction of missing data in sensor networks. , 2013, , .		9
69	An HMM-based change detection method for intelligent embedded sensors. , 2012, , .		15
70	Modeling the Temporal Evolution of Acoustic Parameters for Speech Emotion Recognition. IEEE Transactions on Affective Computing, 2012, 3, 116-125.	8.3	74
71	Audio surveillance. WIT Transactions on State-of-the-art in Science and Engineering, 2012, , 191-205.	0.0	3
72	Probabilistic Novelty Detection for Acoustic Surveillance Under Real-World Conditions. IEEE Transactions on Multimedia, 2011, 13, 713-719.	7.2	95

#	Article	IF	CITATIONS
73	A PRACTICAL SYSTEM FOR ACOUSTIC SURVEILLANCE OF HAZARDOUS SITUATIONS. International Journal on Artificial Intelligence Tools, 2011, 20, 119-137.	1.0	2
74	Fusion of acoustic and optical sensor data for automatic fight detection in urban environments. , 2010, , .		23
75	Sound classification based on temporal feature integration. , 2010, , .		2
76	An Adaptive Framework for Acoustic Monitoring of Potential Hazards. Eurasip Journal on Audio, Speech, and Music Processing, 2009, 2009, 1-15.	2.1	44
77	PROMETHEUS database: A multimodal corpus for research on modeling and interpreting human behavior. , 2009, , .		12
78	On acoustic surveillance of hazardous situations. , 2009, , .		90
79	Exploiting Temporal Feature Integration for Generalized Sound Recognition. Eurasip Journal on Advances in Signal Processing, 2009, 2009, .	1.7	30
80	Speech/Music Discrimination Based on Discrete Wavelet Transform. Lecture Notes in Computer Science, 2008, , 205-211.	1.3	2
81	Objective comparison of speech enhancement algorithms under real world conditions. , 2008, , .		8
82	Human evaluation of the LOGOS' spoken dialogue system. , 2008, , .		0
83	Automatic Recognition of Urban Soundscenes. Studies in Computational Intelligence, 2008, , 147-153.	0.9	8
84	LOGOS: A Multimodal Dialogue System for Controlling Smart Appliances. Studies in Computational Intelligence, 2008, , 585-594.	0.9	0
85	A multidomain approach for automatic home environmental sound classification. , 0, , .		7