
Antonio J MartÃ-n

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8848177/publications.pdf Version: 2024-02-01

Αντονίο Ι Μαρτ<u></u>δη

#	Article	IF	CITATIONS
1	Indium Oxide as a Superior Catalyst for Methanol Synthesis by CO ₂ Hydrogenation. Angewandte Chemie - International Edition, 2016, 55, 6261-6265.	7.2	769
2	Electrocatalytic Reduction of Nitrogen: From Haber-Bosch to Ammonia Artificial Leaf. CheM, 2019, 5, 263-283.	5.8	339
3	Towards sustainable fuels and chemicals through the electrochemical reduction of CO ₂ : lessons from water electrolysis. Green Chemistry, 2015, 17, 5114-5130.	4.6	288
4	Catalytic processing of plastic waste on the rise. CheM, 2021, 7, 1487-1533.	5.8	236
5	Sulfur-Modified Copper Catalysts for the Electrochemical Reduction of Carbon Dioxide to Formate. ACS Catalysis, 2018, 8, 837-844.	5.5	209
6	Enhanced Reduction of CO ₂ to CO over Cu–In Electrocatalysts: Catalyst Evolution Is the Key. ACS Catalysis, 2016, 6, 6265-6274.	5.5	170
7	Building Blocks for High Performance in Electrocatalytic CO ₂ Reduction: Materials, Optimization Strategies, and Device Engineering. Journal of Physical Chemistry Letters, 2017, 8, 3933-3944.	2.1	147
8	Dry reforming of methane to syngas over La-promoted hydrotalcite clay-derived catalysts. International Journal of Hydrogen Energy, 2012, 37, 12342-12350.	3.8	94
9	Heading to Distributed Electrocatalytic Conversion of Small Abundant Molecules into Fuels, Chemicals, and Fertilizers. Joule, 2019, 3, 2602-2621.	11.7	86
10	Indium Oxide as a Superior Catalyst for Methanol Synthesis by CO ₂ Hydrogenation. Angewandte Chemie, 2016, 128, 6369-6373.	1.6	78
11	Synergistic effects in silver–indium electrocatalysts for carbon dioxide reduction. Journal of Catalysis, 2016, 343, 266-277.	3.1	73
12	PEMFC electrode preparation by electrospray: Optimization of catalyst load and ionomer content. Catalysis Today, 2009, 143, 237-241.	2.2	67
13	Microfabricated electrodes unravel the role of interfaces in multicomponent copper-based CO2 reduction catalysts. Nature Communications, 2018, 9, 1477.	5.8	60
14	Origin of the Selective Electroreduction of Carbon Dioxide to Formate by Chalcogen Modified Copper. Journal of Physical Chemistry Letters, 2018, 9, 7153-7159.	2.1	57
15	Electrochemical Reduction of Carbon Dioxide to 1â€Butanol on Oxideâ€Đerived Copper. Angewandte Chemie - International Edition, 2020, 59, 21072-21079.	7.2	57
16	A portable system powered with hydrogen and one single air-breathing PEM fuel cell. Applied Energy, 2013, 109, 60-66.	5.1	53
17	Comparative analysis of the electroactive area of Pt/C PEMFC electrodes in liquid and solid polymer contact by underpotential hydrogen adsorption/desorption. International Journal of Hydrogen Energy, 2009, 34, 4838-4846.	3.8	52
18	Biogas reforming over La-NiMgAl catalysts derived from hydrotalcite-like structure: Influence of calcination temperature. Catalysis Communications, 2011, 12, 961-967.	1.6	48

Antonio J MartÃn

#	Article	IF	CITATIONS
19	Solvothermallyâ€Prepared Cu ₂ O Electrocatalysts for CO ₂ Reduction with Tunable Selectivity by the Introduction of pâ€Block Elements. ChemSusChem, 2017, 10, 1255-1265.	3.6	47
20	Properties of Catalyst Layers for PEMFC Electrodes Prepared by Electrospray Deposition. Journal of the Electrochemical Society, 2010, 157, B993.	1.3	39
21	Laser-Microstructured Copper Reveals Selectivity Patterns in the Electrocatalytic Reduction of CO2. CheM, 2020, 6, 1707-1722.	5.8	39
22	Characterization and single cell testing of Pt/C electrodes prepared by electrodeposition. Journal of Power Sources, 2009, 192, 14-20.	4.0	38
23	Direct Conversion of Polypropylene into Liquid Hydrocarbons on Carbonâ€6upported Platinum Catalysts. ChemSusChem, 2021, 14, 5179-5185.	3.6	35
24	Catalyst layers for proton exchange membrane fuel cells prepared by electrospray deposition on Nafion membrane. Journal of Power Sources, 2011, 196, 4200-4208.	4.0	32
25	Planetary Boundaries Analysis of Low-Carbon Ammonia Production Routes. ACS Sustainable Chemistry and Engineering, 2021, 9, 9740-9749.	3.2	30
26	Hybridization of Fossil―and CO ₂ â€Based Routes for Ethylene Production using Renewable Energy. ChemSusChem, 2020, 13, 6370-6380.	3.6	29
27	Mechanistic routes toward C ₃ products in copper-catalysed CO ₂ electroreduction. Catalysis Science and Technology, 2022, 12, 409-417.	2.1	24
28	Single cell study of electrodeposited cathodic electrodes based on Pt–WO3 for polymer electrolyte fuel cells. Journal of Power Sources, 2011, 196, 4187-4192.	4.0	22
29	Nitrideâ€Derived Copper Modified with Indium as a Selective and Highly Stable Catalyst for the Electroreduction of Carbon Dioxide. ChemSusChem, 2019, 12, 3501-3508.	3.6	20
30	Structure Sensitivity and Evolution of Nickel-Bearing Nitrogen-Doped Carbons in the Electrochemical Reduction of CO ₂ . ACS Catalysis, 2020, 10, 3444-3454.	5.5	20
31	Toward reliable and accessible ammonia quantification in the electrocatalytic reduction of nitrogen. Chem Catalysis, 2021, 1, 1505-1518.	2.9	20
32	Electrochemical Reduction of Carbon Dioxide to 1â€Butanol on Oxideâ€Derived Copper. Angewandte Chemie, 2020, 132, 21258-21265.	1.6	19
33	Visualising compositional heterogeneity during the scale up of multicomponent zeolite bodies. Materials Horizons, 2017, 4, 857-861.	6.4	18
34	Electrochemical quartz crystal microbalance study of the electrodeposition of Co, Pt and Pt–Co alloy. Journal of Power Sources, 2007, 169, 65-70.	4.0	17
35	Rotating disk electrode analysis of oxygen reduction at platinum particles under limiting diffusion conditions. Electrochimica Acta, 2009, 54, 2209-2217.	2.6	14
36	Elucidating the Distribution and Speciation of Boron and Cesium in BCsX Zeolite Catalysts for Styrene Production. ChemPhysChem, 2018, 19, 437-445.	1.0	12

Antonio J MartÃn

#	Article	IF	CITATIONS
37	Controlled Formation of Dimers and Spatially Isolated Atoms in Bimetallic Auâ€Ru Catalysts via Carbonâ€Host Functionalization. Small, 2022, 18, e2200224.	5.2	9
38	Mechanisms for the Growth of Thin Films of WO3 and Bronzes from Suspensions of WO3 Nanoparticles. ECS Transactions, 2015, 64, 43-56.	0.3	7
39	Electrodeposition of Platinum on Carbon Black for Fuel Cell Application. ECS Transactions, 2008, 13, 13-18.	0.3	5
40	EQCM Study of the Electrodeposition of Pt-WO3 and Its Catalytic Activity towards the ORR. ECS Transactions, 2010, 33, 309-320.	0.3	5
41	Theoretical Analysis of the Limiting Diffusion Current at a 'Particulate Rotating Disk Electrode'. ECS Transactions, 2010, 25, 125-133.	0.3	4
42	Recent Advances in Fuel Cells for Transport and Stationary Applications. , 2013, , 361-380.		3
43	Influence of Operation Parameters on the Response of a PEMFC with Electrodeposited Ptâ€WO ₃ Cathode. Fuel Cells, 2014, 14, 742-749.	1.5	3
44	Microfabrication Enables Quantification of Interfacial Activity in Thermal Catalysis. Small Methods, 2021, 5, 2001231.	4.6	2
45	Microstructure of Electrospray Deposited Catalyst Layers for PEMFC Electrodes. ECS Transactions, 2010, 26, 197-205.	0.3	1
46	Mechanistic Routes toward C3-C4 products in Copper-Catalysed CO2 Electroreduction. , 0, , .		1
47	Properties of Catalyst Layers Prepared by Electrospray Deposition. ECS Transactions, 2009, 25, 1221-1227.	0.3	Ο
48	Pt-Co Electrodeposited Electrodes: Surface Distribution and Depth Profile. ECS Transactions, 2009, 25, 2039-2047.	0.3	0
49	Testing of Catalyst Coated Membranes for PEMFC, Prepared by Electrospray Deposition. ECS Transactions, 2010, 33, 267-273.	0.3	Ο
50	Titelbild: Indium Oxide as a Superior Catalyst for Methanol Synthesis by CO ₂ Hydrogenation (Angew. Chem. 21/2016). Angewandte Chemie, 2016, 128, 6215-6215.	1.6	0
51	Inside Back Cover: Microfabrication Enables Quantification of Interfacial Activity in Thermal Catalysis (Small Methods 5/2021). Small Methods, 2021, 5, 2170021.	4.6	0