Konrad Aden

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8848094/publications.pdf

Version: 2024-02-01

361413 434195 1,960 37 20 31 citations h-index g-index papers 38 38 38 3977 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Epithelial X-Box Binding Protein 1 Coordinates Tumor Protein p53-Driven DNA Damage Responses and Suppression of Intestinal Carcinogenesis. Gastroenterology, 2022, 162, 223-237.e11.	1.3	15
2	PUFA-Induced Metabolic Enteritis as a Fuel for Crohn's Disease. Gastroenterology, 2022, 162, 1690-1704.	1.3	24
3	Signatures of TOP1 transcription-associated mutagenesis in cancer and germline. Nature, 2022, 602, 623-631.	27.8	38
4	A novel unconventional T cell population enriched in Crohn's disease. Gut, 2022, 71, 2194-2204.	12.1	22
5	Longitudinal monitoring of <scp>STAT3</scp> phosphorylation and histologic outcome of tofacitinib therapy in patients with ulcerative colitis. Alimentary Pharmacology and Therapeutics, 2022, 56, 282-291.	3.7	5
6	SETDB1 is required for intestinal epithelial differentiation and the prevention of intestinal inflammation. Gut, 2021, 70, 485-498.	12.1	39
7	The role of cGAS/STING in intestinal immunity. European Journal of Immunology, 2021, 51, 785-797.	2.9	22
8	Therapeutic Interleukin-6 Trans-signaling Inhibition by Olamkicept (sgp130Fc) in Patients With Active Inflammatory Bowel Disease. Gastroenterology, 2021, 160, 2354-2366.e11.	1.3	120
9	IL23R on myeloid cells is involved in murine pulmonary granuloma formation. Experimental Lung Research, 2021, 47, 344-353.	1.2	1
10	Activating Transcription Factor 6 Mediates Inflammatory Signals in Intestinal Epithelial Cells Upon Endoplasmic Reticulum Stress. Gastroenterology, 2020, 159, 1357-1374.e10.	1.3	73
11	Reply. Gastroenterology, 2020, 158, 1512-1513.	1.3	O
12	NOD2 Influences Trajectories of Intestinal Microbiota Recovery After Antibiotic Perturbation. Cellular and Molecular Gastroenterology and Hepatology, 2020, 10, 365-389.	4.5	19
13	Prdx4 limits caspaseâ€1 activation and restricts inflammasomeâ€mediated signaling by extracellular vesicles. EMBO Journal, 2019, 38, e101266.	7.8	27
14	Interferon Lambda Promotes Paneth Cell Death Via STAT1 Signaling in Mice and Is Increased in Inflamed leal Tissues of Patients With Crohn's Disease. Gastroenterology, 2019, 157, 1310-1322.e13.	1.3	63
15	Metabolic Functions of Gut Microbes Associate With Efficacy ofÂTumor Necrosis Factor Antagonists in Patients With Inflammatory Bowel Diseases. Gastroenterology, 2019, 157, 1279-1292.e11.	1.3	180
16	Missense variants in NOX1 and p22phox in a case of very-early-onset inflammatory bowel disease are functionally linked to NOD2. Journal of Physical Education and Sports Management, 2019, 5, a002428.	1.2	13
17	292 CONFOCAL LASER ENDOMICROSCOPY REVEALS DIFFERENTIAL RESPONSE IN PATIENTS WITH ACTIVE ULCERATIVE COLITIS UNDERGOING ANTI-INTEGRIN COMPARED TO ANTI-TNF-ALPHA THERAPY. Gastrointestinal Endoscopy, 2019, 89, AB68-AB69.	1.0	1
18	The Gut Microbiome in Inflammatory Bowel Diseases: Diagnostic and Therapeutic Implications. Visceral Medicine, 2019, 35, 332-337.	1.3	4

#	Article	IF	Citations
19	Epithelial RNase H2 Maintains Genome Integrity and Prevents Intestinal Tumorigenesis in Mice. Gastroenterology, 2019, 156, 145-159.e19.	1.3	46
20	Vedolizumab is associated with changes in innate rather than adaptive immunity in patients with inflammatory bowel disease. Gut, 2019, 68, 25-39.	12.1	160
21	ATG16L1 orchestrates interleukin-22 signaling in the intestinal epithelium via cGAS–STING. Journal of Experimental Medicine, 2018, 215, 2868-2886.	8.5	122
22	Uncoupling of mucosal gene regulation, mRNA splicing and adherent microbiota signatures in inflammatory bowel disease. Gut, 2017, 66, 2087-2097.	12.1	81
23	The Dark Age(ing) of the Inflammasome. Immunity, 2017, 46, 173-175.	14.3	5
24	Increased Tryptophan Metabolism Is Associated With Activity of Inflammatory Bowel Diseases. Gastroenterology, 2017, 153, 1504-1516.e2.	1.3	338
25	Microbiomarkers in inflammatory bowel diseases: caveats come with caviar. Gut, 2017, 66, 1734-1738.	12.1	47
26	Absence of RNase H2 triggers generation of immunogenic micronuclei removed by autophagy. Human Molecular Genetics, 2017, 26, 3960-3972.	2.9	160
27	Anti-Tnf Therapy Systematically Influences Intestinal Microbial Community Structure in Chronic Inflammatory Diseases. Gastroenterology, 2017, 152, S993-S994.	1.3	0
28	Sa2004 Biological Therapy Modulates Gut Microbiota - A Longitudinal Study Across Chronic Inflammatory Diseases. Gastroenterology, 2016, 150, S429-S430.	1.3	0
29	432 ATG16L1 and XBP1 Coordinate Interleukin 22 Dependent Signals in Intestinal Epithelium. Gastroenterology, 2016, 150, S90.	1.3	0
30	Epithelial IL-23R Signaling Licenses Protective IL-22 Responses in Intestinal Inflammation. Cell Reports, 2016, 16, 2208-2218.	6.4	89
31	Tu2068 The Ribonuclease RNaseH2b Controls Intestinal Stem Cell Integrity. Gastroenterology, 2016, 150, S1015.	1.3	0
32	574 Confocal laser endomicroscopy predicts response in patients with acute inflammatory bowel disease undergoing anti-integrin therapy with Vedolizumab Gastrointestinal Endoscopy, 2016, 83, AB154.	1.0	0
33	Modulation of Nuclear Factor E2-related Factor-2 (Nrf2) Activation by the Stress Response Gene Immediate Early Response-3 (IER3) in Colonic Epithelial Cells. Journal of Biological Chemistry, 2014, 289, 1917-1929.	3.4	42
34	Extracellular cathepsin K exerts antimicrobial activity and is protective against chronic intestinal inflammation in mice. Gut, 2013, 62, 520-530.	12.1	31
35	RNAi screening identifies mediators of NOD2 signaling: Implications for spatial specificity of MDP recognition. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 21426-21431.	7.1	7 5
36	Toll-like receptor-7 ligand imiquimod induces type I interferon and antimicrobial peptides to ameliorate dextran sodium sulfate-induced acute colitis. Inflammatory Bowel Diseases, 2012, 18, 955-967.	1.9	46

#	Article	lF	CITATIONS
37	Reg IV Regulates Normal Intestinal and Colorectal Cancer Cell Susceptibility to Radiation-Induced Apoptosis. Gastroenterology, 2010, 138, 616-626.e2.	1.3	52