List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8848034/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Strategic Participation of Integrated Thermal and Electrical Energy Service Provider in Natural Gas and Wholesale Electricity Markets. IEEE Transactions on Industrial Informatics, 2023, 19, 5433-5443.	7.2	2
2	Day-ahead offering strategy in the market for concentrating solar power considering thermoelectric decoupling by a compressed air energy storage. Applied Energy, 2022, 305, 117804.	5.1	43
3	Fair-Optimal Bilevel Transactive Energy Management for Community of Microgrids. IEEE Systems Journal, 2022, 16, 2125-2135.	2.9	22
4	Multi-energy microgrids: An optimal despatch model for water-energy nexus. Sustainable Cities and Society, 2022, 77, 103573.	5.1	19
5	Review on classification of resonant converters for electric vehicle application. Energy Reports, 2022, 8, 1091-1113.	2.5	34
6	Intelligent charging planning for electric vehicle commercial parking lots and its impact on distribution network's imbalance indices. Sustainable Energy, Grids and Networks, 2022, 30, 100620.	2.3	25
7	Decentralized bi-level stochastic optimization approach for multi-agent multi-energy networked micro-grids with multi-energy storage technologies. Energy, 2022, 245, 123223.	4.5	74
8	Optimal location of electric vehicle charging station and its impact on distribution network: A review. Energy Reports, 2022, 8, 2314-2333.	2.5	149
9	Optimal sizing of hybrid renewable energy systems by considering power sharing and electric vehicles. International Journal of Energy Research, 2022, 46, 8288-8312.	2.2	41
10	A Heuristic Charging Cost Optimization Algorithm for Residential Charging of Electric Vehicles. Energies, 2022, 15, 1304.	1.6	14
11	A tactical scheduling framework for wind farmâ€integrated multiâ€energy systems to take part in natural gas and wholesale electricity markets as a price setter. IET Generation, Transmission and Distribution, 2022, 16, 1849-1864.	1.4	35
12	Placement of electric vehicle fast charging stations in distribution network considering power loss, land cost, and electric vehicle population. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2022, 44, 1693-1709.	1.2	20
13	Designing, optimizing and comparing distributed generation technologies as a substitute system for reducing life cycle costs, CO2 emissions, and power losses in residential buildings. Energy, 2022, 253, 123947.	4.5	41
14	Smart peer-to-peer and transactive energy sharing architecture considering incentive-based demand response programming under joint uncertainty and line outage contingency. Journal of Cleaner Production, 2022, 363, 132403.	4.6	17
15	State-of-the-art vehicle-to-everything mode of operation of electric vehicles and its future perspectives. Renewable and Sustainable Energy Reviews, 2022, 166, 112574.	8.2	36
16	Robust Flexible Unit Commitment in Network-Constrained Multicarrier Energy Systems. IEEE Systems Journal, 2021, 15, 5267-5276.	2.9	35
17	Short-Term Self-Scheduling of Virtual Energy Hub Plant Within Thermal Energy Market. IEEE Transactions on Industrial Electronics, 2021, 68, 3124-3136.	5.2	114
18	Network-Constrained Joint Energy and Flexible Ramping Reserve Market Clearing of Power- and Heat-Based Energy Systems: A Two-Stage Hybrid IGDT–Stochastic Framework. IEEE Systems Journal, 2021, 15, 1547-1556.	2.9	35

#	Article	IF	CITATIONS
19	Evaluating the effect of electric vehicle parking lots in transmission-constrained AC unit commitment under a hybrid IGDT-stochastic approach. International Journal of Electrical Power and Energy Systems, 2021, 125, 106546.	3.3	60
20	A Technical analysis investigating energy sustainability utilizing reliable renewable energy sources to reduce <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">altimg="si1.svg"><mml:mrow><mml:msub><mml:mtext>CO</mml:mtext><mml:mn>2</mml:mn>emissions in a high potential area. Renewable Energy, 2021, 164, 46-57.</mml:msub></mml:mrow></mml:math>	> #331:m</td <td>row²⁶²/mml:m</td>	row ²⁶² /mml:m
21	A hybrid robust-stochastic approach to evaluate the profit of a multi-energy retailer in tri-layer energy markets. Energy, 2021, 214, 118948.	4.5	27
22	Energy consumption modeling of production process for industrial factories in a day ahead scheduling with demand response. Sustainable Energy, Grids and Networks, 2021, 25, 100420.	2.3	14
23	Autonomous energy management system with self-healing capabilities for green buildings (microgrids). Journal of Building Engineering, 2021, 34, 101604.	1.6	15
24	Co-Optimization of Energy Losses and Transformer Operating Costs Based on Smart Charging Algorithm for Plug-In Electric Vehicle Parking Lots. IEEE Transactions on Transportation Electrification, 2021, 7, 527-541.	5.3	22
25	Energy vehicles as means of energy storage. , 2021, , 131-146.		Ο
26	Interval optimizationâ€based scheduling of interlinked power, gas, heat, and hydrogen systems. IET Renewable Power Generation, 2021, 15, 1214-1226.	1.7	22
27	Economic-environmental analysis of combined heat and power-based reconfigurable microgrid integrated with multiple energy storage and demand response program. Sustainable Cities and Society, 2021, 69, 102790.	5.1	74
28	Networkâ€constrained rail transportation and power system scheduling with mobile battery energy storage under a multiâ€objective twoâ€stage stochastic programming. International Journal of Energy Research, 2021, 45, 18827-18845.	2.2	11
29	A framework for day-ahead optimal charging scheduling of electric vehicles providing route mapping: Kowloon case study. Journal of Cleaner Production, 2021, 307, 127297.	4.6	32
30	Investigating Smart City Development Based on Green Buildings, Electrical Vehicles and Feasible Indicators. Sustainability, 2021, 13, 7808.	1.6	38
31	State-of-the-Art of Optimal Active and Reactive Power Flow: A Comprehensive Review from Various Standpoints. Processes, 2021, 9, 1319.	1.3	33
32	CVaR-based retail electricity pricing in day-ahead scheduling of microgrids. Energy, 2021, 227, 120529.	4.5	42
33	An energy management system structure for Neighborhood Networks. Journal of Building Engineering, 2021, 41, 102376.	1.6	7
34	Home-Microgrid Energy Management Strategy Considering EV's Participation in DR. Energies, 2021, 14, 5971.	1.6	5
35	A comprehensive day-ahead scheduling strategy for electric vehicles operation. International Journal of Electrical Power and Energy Systems, 2021, 131, 106912.	3.3	18
36	A hybrid robust-stochastic framework for strategic scheduling of integrated wind farm and plug-in hybrid electric vehicle fleets. Applied Energy, 2021, 300, 117432.	5.1	57

#	Article	IF	CITATIONS
37	Dynamic clustering-based model reduction scheme for damping control of large power systems using series compensators from wide area signals. International Journal of Electrical Power and Energy Systems, 2021, 131, 107082.	3.3	16
38	Robust network-constrained energy management of a multiple energy distribution company in the presence of multi-energy conversion and storage technologies. Sustainable Cities and Society, 2021, 74, 103147.	5.1	34
39	Multi-objective IGDT-based scheduling of low-carbon multi-energy microgrids integrated with hydrogen refueling stations and electric vehicle parking lots. Sustainable Cities and Society, 2021, 74, 103197.	5.1	65
40	A hybrid robust-stochastic approach for strategic scheduling of a multi-energy system as a price-maker player in day-ahead wholesale market. Energy, 2021, 235, 121398.	4.5	71
41	Enhancement of flexibility in multi-energy microgrids considering voltage and congestion improvement: Robust thermal comfort against reserve calls. Sustainable Cities and Society, 2021, 74, 103160.	5.1	44
42	Robust decentralized optimization of Multi-Microgrids integrated with Power-to-X technologies. Applied Energy, 2021, 304, 117635.	5.1	91
43	An Optimal Day-Ahead Scheduling Framework for E-Mobility Ecosystem Operation With Drivers' Preferences. IEEE Transactions on Power Systems, 2021, 36, 5245-5257.	4.6	9
44	A Mixed Epistemic-Aleatory Stochastic Framework for the Optimal Operation of Hybrid Fuel Stations. IEEE Transactions on Vehicular Technology, 2021, 70, 9764-9774.	3.9	7
45	Data-Driven Model-Free Adaptive Control of Z-Source Inverters. Sensors, 2021, 21, 7438.	2.1	4
46	Multi-objective techno-economic-environmental optimisation of electric vehicle for energy services. Applied Energy, 2020, 257, 113965.	5.1	124
47	Economic-environmental effect of power to gas technology in coupled electricity and gas systems with price-responsive shiftable loads. Journal of Cleaner Production, 2020, 244, 118769.	4.6	119
48	A hierarchical energy management system for multiple home energy hubs in neighborhood grids. Journal of Building Engineering, 2020, 28, 101028.	1.6	87
49	Hourly Price-Based Demand Response for Optimal Scheduling of Integrated Gas and Power Networks Considering Compressed Air Energy Storage. , 2020, , 55-74.		1
50	Scheduling of Air Conditioning and Thermal Energy Storage Systems Considering Demand Response Programs. Sustainability, 2020, 12, 7311.	1.6	5
51	Integrated energy hub system based on powerâ€ŧoâ€gas and compressed air energy storage technologies in the presence of multiple shiftable loads. IET Generation, Transmission and Distribution, 2020, 14, 2510-2519.	1.4	79
52	A novel hybrid two-stage framework for flexible bidding strategy of reconfigurable micro-grid in day-ahead and real-time markets. International Journal of Electrical Power and Energy Systems, 2020, 123, 106293.	3.3	63
53	A bi-level market-clearing for coordinated regional-local multi-carrier systems in presence of energy storage technologies. Sustainable Cities and Society, 2020, 63, 102439.	5.1	57
54	Optimal Robust LQI Controller Design for Z-Source Inverters. Applied Sciences (Switzerland), 2020, 10, 7260.	1.3	10

#	Article	IF	CITATIONS
55	Semiâ€valley switching method for buck LED driver to increase its efficiency and performance. IET Power Electronics, 2020, 13, 1966-1973.	1.5	1
56	A technical assessment on photovoltaic power generation under varying weather profile $\hat{a} {\in} ``$ Northumbria university pilot. , 2020, , .		2
57	Coalition Formation of Microgrids with Distributed Energy Resources and Energy Storage in Energy Market. Journal of Modern Power Systems and Clean Energy, 2020, 8, 906-918.	3.3	25
58	Evaluating the impact of multi-carrier energy storage systems in optimal operation of integrated electricity, gas and district heating networks. Applied Thermal Engineering, 2020, 176, 115413.	3.0	79
59	Resonance-Based Optimized Buck LED Driver Using Unequal Turn Ratio Coupled Inductance. IEEE Transactions on Power Electronics, 2020, 35, 13068-13076.	5.4	8
60	A Novel Hybrid Framework for Co-Optimization of Power and Natural Gas Networks Integrated With Emerging Technologies. IEEE Systems Journal, 2020, 14, 3598-3608.	2.9	53
61	Two-Stage Robust-Stochastic Electricity Market Clearing Considering Mobile Energy Storage in Rail Transportation. IEEE Access, 2020, 8, 121780-121794.	2.6	33
62	Demand Response Based on the Power Factor Considering Polynomial and Induction Motor loads. , 2020, , .		1
63	An A-Posteriori Multi-Objective Optimization Method for MILP-Based Distribution Expansion Planning. IEEE Access, 2020, 8, 60279-60292.	2.6	9
64	Security Constrained Two-Stage Model for CO2 Emission Reduction. , 2020, , .		0
65	Evaluation of hydrogen storage technology in risk-constrained stochastic scheduling of multi-carrier energy systems considering power, gas and heating network constraints. International Journal of Hydrogen Energy, 2020, 45, 30129-30141.	3.8	55
66	A novel techno-economic multi-level optimization in home-microgrids with coalition formation capability. Sustainable Cities and Society, 2020, 60, 102241.	5.1	23
67	Efficient Energy Managemet System Based on Demand Shifts in Domestic Grid Considering Emission and Tax on Carbon. , 2020, , .		2
68	A hybrid price-based demand response program for the residential micro-grid. Energy, 2019, 185, 274-285.	4.5	100
69	Dynamic behavior of multi-carrier energy market in view of investment incentives. Electrical Engineering, 2019, 101, 1033-1051.	1.2	9
70	Implementation of energy sustainability using hybrid power systems, a case study. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2019, , 1-14.	1.2	11
71	An innovative energy management framework for cooperative operation management of electricity and natural gas demands. Energy Conversion and Management, 2019, 200, 112069.	4.4	19
72	An Improved UFLS Scheme based on Estimated Minimum Frequency and Power Deficit. , 2019, , .		27

#	Article	IF	CITATIONS
73	Optimal Planning and Operation Scheduling of Battery Storage Units in Distribution Systems. , 2019, , .		1
74	Integration of emerging resources in IGDT-based robust scheduling of combined power and natural gas systems considering flexible ramping products. Energy, 2019, 189, 116195.	4.5	91
75	Optimal power flow problem considering multiple-fuel options and disjoint operating zones: A solver-friendly MINLP model. International Journal of Electrical Power and Energy Systems, 2019, 113, 45-55.	3.3	38
76	The Impact of Demand Response Programs on Reducing the Emissions and Cost of A Neighborhood Home Microgrid. Applied Sciences (Switzerland), 2019, 9, 2097.	1.3	8
77	An overview of energy planning in Iran and transition pathways towards sustainable electricity supply sector. Renewable and Sustainable Energy Reviews, 2019, 112, 58-74.	8.2	95
78	Energy sustainability analyses using feasible indicators for urban areas. International Journal of Energy and Water Resources, 2019, 3, 127-140.	1.3	6
79	Uncertainty-Based Models for Optimal Management of Energy Hubs Considering Demand Response. Energies, 2019, 12, 1413.	1.6	35
80	Stochastic network-constrained co-optimization of energy and reserve products in renewable energy integrated power and gas networks with energy storage system. Journal of Cleaner Production, 2019, 223, 747-758.	4.6	109
81	An Innovative Dual-Boost Nine-Level Inverter with Low-Voltage Rating Switches. Energies, 2019, 12, 207.	1.6	14
82	Theoretical and technical potential evaluation of solar power generation in Iran. Renewable Energy, 2019, 138, 1250-1261.	4.3	78
83	Dynamic Carbon-Constrained EPEC Model for Strategic Generation Investment Incentives with the Aim of Reducing CO2 Emissions. Energies, 2019, 12, 4813.	1.6	10
84	Robust Transmission-Constrained AC unit Commitment in Presence of Smart Technologies. , 2019, , .		0
85	Retail Electricity Pricing Impacts on Demand Response and Electrical Vehicles Planning in Residential Micro-grid. , 2019, , .		3
86	Enabling electricity access: revisiting load models for ACâ€grid operation ―Part I. IET Generation, Transmission and Distribution, 2019, 13, 2563-2571.	1.4	22
87	Enabling electricity access: a comprehensive energy efficient approach mitigating climate/weather variability – Part II. IET Generation, Transmission and Distribution, 2019, 13, 2572-2583.	1.4	18
88	Application of finite-time control Lyapunov function in low-power PMSG wind energy conversion systems for sensorless MPPT. International Journal of Electrical Power and Energy Systems, 2019, 106, 169-182.	3.3	29
89	Control technique for the operation of grid-tied converters with high penetration of renewable energy resources. Electric Power Systems Research, 2019, 166, 18-28.	2.1	36
90	CVaR-based energy management scheme for optimal resilience and operational cost in commercial building microgrids. International Journal of Electrical Power and Energy Systems, 2018, 100, 1-9.	3.3	161

#	Article	IF	CITATIONS
91	Framework for smart transactive energy in home-microgrids considering coalition formation and demand side management. Sustainable Cities and Society, 2018, 40, 136-154.	5.1	85
92	An advanced retail electricity market for active distribution systems and home microgrid interoperability based on game theory. Electric Power Systems Research, 2018, 157, 187-199.	2.1	102
93	Reconsidering insulation coordination and simulation under the effect of pollution due to climate change. International Transactions on Electrical Energy Systems, 2018, 28, e2595.	1.2	3
94	Smart transactive energy framework in grid-connected multiple home microgrids under independent and coalition operations. Renewable Energy, 2018, 126, 95-106.	4.3	183
95	Investigating Wind Generation Investment Indices in Multi-Stage Planning. , 2018, , .		2
96	Energy Management of a Single Grid-Connected Home Microgrid for Determining Optimal Supply/Demand Bids. , 2018, , .		5
97	Dynamic Stochastic EPEC Model for Competition of Dominant Producers in Generation Expansion Planning. , 2018, , .		2
98	Optimization of Day Ahead Distributed Intelligent Decision-Making for a Multi-Microgrid System. , 2018, , .		1
99	Consideration of Hourly Flexible Ramping Products in Stochastic Day-Ahead Scheduling of Integrated Wind and Storage Systems. , 2018, , .		2
100	Maximization of Wind Energy Utilization and Flicker Propagation Mitigation Using SC and STATCOM. , 2018, , .		3
101	Investment Incentives in Competitive Electricity Markets. Applied Sciences (Switzerland), 2018, 8, 1978.	1.3	30
102	A Centralized Smart Decision-Making Hierarchical Interactive Architecture for Multiple Home Microgrids in Retail Electricity Market. Energies, 2018, 11, 3144.	1.6	34
103	Long-Term Decision on Wind Investment with Considering Different Load Ranges of Power Plant for Sustainable Electricity Energy Market. Sustainability, 2018, 10, 3811.	1.6	29
104	Synchronous Resonant Control Technique to Address Power Grid Instability Problems Due to High Renewables Penetration. Energies, 2018, 11, 2469.	1.6	17
105	Simulation and Comparison of Mathematical Models of PV Cells with Growing Levels of Complexity. Energies, 2018, 11, 2902.	1.6	26
106	A two stage hierarchical control approach for the optimal energy management in commercial building microgrids based on local wind power and PEVs. Sustainable Cities and Society, 2018, 41, 332-340.	5.1	112
107	Optimal Energy Providing Strategy of Micro-Grid's Operator Based on a Game Theoretical Approach. , 2018, , .		2
108	An Optimal Energy Management System for Islanded Microgrids Based on Multiperiod Artificial Bee Colony Combined With Markov Chain. IEEE Systems Journal, 2017, 11, 1712-1722.	2.9	200

#	Article	IF	CITATIONS
109	Distributed generation for economic benefit maximization through coalition formation-based game theory concept. International Transactions on Electrical Energy Systems, 2017, 27, e2313.	1.2	46
110	Optimal energy management for a home Microgrid based on multi-period artificial bee colony. , 2017, , .		7
111	Generation expansion planning in electricity market considering uncertainty in load demand and presence of strategic GENCOs. Electric Power Systems Research, 2017, 152, 92-104.	2.1	38
112	Optimal energy management system based on stochastic approach for a home Microgrid with integrated responsive load demand and energy storage. Sustainable Cities and Society, 2017, 28, 256-264.	5.1	127
113	A real-time evaluation of energy management systems for smart hybrid home Microgrids. Electric Power Systems Research, 2017, 143, 624-633.	2.1	128
114	Adaptive load shedding scheme for frequency stability enhancement in microgrids. Electric Power Systems Research, 2016, 140, 78-86.	2.1	90
115	Energy management system based on fuzzy fractional order PID controller for transient stability improvement in microgrids with energy storage. International Transactions on Electrical Energy Systems, 2016, 26, 2087-2106.	1.2	32
116	Optimal energy scheduling for a grid connected Microgrid based on Multi-period Imperialist competition algorithm. , 2016, , .		4
117	Nonâ€cooperative game theory based energy management systems for energy district in the retail market considering DER uncertainties. IET Generation, Transmission and Distribution, 2016, 10, 2999-3009.	1.4	115
118	Optimal energy management for stand-alone microgrids based on multi-period imperialist competition algorithm considering uncertainties: experimental validation. International Transactions on Electrical Energy Systems, 2016, 26, 1358-1372.	1.2	60
119	Distributed Smart Decision-Making for a Multimicrogrid System Based on a Hierarchical Interactive Architecture. IEEE Transactions on Energy Conversion, 2016, 31, 637-648.	3.7	131
120	Real time experimental implementation of optimum energy management system in standalone Microgrid by using multi-layer ant colony optimization. International Journal of Electrical Power and Energy Systems, 2016, 75, 265-274.	3.3	217
121	Experimental validation of a real-time energy management system using multi-period gravitational search algorithm for microgrids in islanded mode. Applied Energy, 2014, 128, 164-174.	5.1	205
122	Experimental validation of a real time energy management system for microgrids in islanded mode using a local day-ahead electricity market and MINLP. Energy Conversion and Management, 2013, 76, 314-322.	4.4	199
123	Experimental evaluation of a real time energy management system for stand-alone microgrids in day-ahead markets. Applied Energy, 2013, 106, 365-376.	5.1	155
124	Frequency control of isolated wind and diesel hybrid MicroGrid power system by using fuzzy logic controllers and PID controllers. , 2011, , .		15
125	Modeling and simulation of the fixed speed wind power generation system for grid studies. , 2011, , .		3

126 Short term load forecasting by using neural network structure. , 2009, , .

#	Article	IF	CITATIONS
127	A SIMULINK study of electric arc furnace power quality improvement by using STATCOM. , 2008, , .		6
128	Power quality monitoring at the industrial, commercial and educational centers of Mazandaran province and presenting the related solution. , 2006, , .		1
129	A program for harmonic modeling of distribution network transformers and determination of loss in the transformers and the amount of decrease of their life. , 2006, , .		7
130	Finding optimum parameters for vector control of salient pole synchronous motor using fuzzy-genetic algorithm. , 0, , .		2
131	The Optimization of Microgrids Operation through a Heuristic Energy Management Algorithm. Advanced Engineering Forum, 0, 8-9, 185-194.	0.3	7