Hadi Valadi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8847858/publications.pdf

Version: 2024-02-01

201575 377752 16,525 34 27 34 citations h-index g-index papers 34 34 34 23934 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nature Cell Biology, 2007, 9, 654-659.	4.6	10,558
2	Vesiclepedia: A Compendium for Extracellular Vesicles with Continuous Community Annotation. PLoS Biology, 2012, 10, e1001450.	2.6	1,064
3	Human saliva, plasma and breast milk exosomes contain RNA: uptake by macrophages. Journal of Translational Medicine, 2011, 9, 9.	1.8	757
4	Plasma exosomes can deliver exogenous short interfering RNA to monocytes and lymphocytes. Nucleic Acids Research, 2012, 40, e130-e130.	6.5	589
5	Exosomes Communicate Protective Messages during Oxidative Stress; Possible Role of Exosomal Shuttle RNA. PLoS ONE, 2010, 5, e15353.	1.1	377
6	Fps1p controls the accumulation and release of the compatible solute glycerol in yeast osmoregulation. Molecular Microbiology, 1999, 31, 1087-1104.	1.2	357
7	EVpedia: a community web portal for extracellular vesicles research. Bioinformatics, 2015, 31, 933-939.	1.8	317
8	The emerging role of extracellular vesicles as biomarkers for urogenital cancers. Nature Reviews Urology, 2014, 11, 688-701.	1.9	242
9	Cell to Cell Signalling via Exosomes Through esRNA. Cell Adhesion and Migration, 2007, 1, 156-158.	1.1	232
10	Linkage between endosomal escape of LNP-mRNA and loading into EVs for transport to other cells. Nature Communications, 2019, 10, 4333.	5.8	211
11	Molecular characterization ofÂexosomes and their microRNA cargo in human follicular fluid: bioinformatic analysis reveals that exosomal microRNAs control pathways involved in follicular maturation. Fertility and Sterility, 2014, 102, 1751-1761.e1.	0.5	192
12	Identification of RNA-binding proteins in exosomes capable of interacting with different types of RNA: RBP-facilitated transport of RNAs into exosomes. PLoS ONE, 2018, 13, e0195969.	1.1	185
13	Extracellular Vesicles: Evolving Factors in Stem Cell Biology. Stem Cells International, 2016, 2016, 1-17.	1.2	179
14	Characterization of mRNA and microRNA in human mast cellâ€derived exosomes and their transfer to other mast cells and blood CD34 progenitor cells. Journal of Extracellular Vesicles, 2012, 1, .	5 . 5	166
15	miRNA profiling in vitreous humor, vitreal exosomes and serum from uveal melanoma patients: Pathological and diagnostic implications. Cancer Biology and Therapy, 2015, 16, 1387-1396.	1.5	140
16	Extracellular Vesicles and Matrix Remodeling Enzymes: The Emerging Roles in Extracellular Matrix Remodeling, Progression of Diseases and Tissue Repair. Cells, 2018, 7, 167.	1.8	129
17	Activated Human T Cells Secrete Exosomes That Participate in IL-2 Mediated Immune Response Signaling. PLoS ONE, 2012, 7, e49723.	1.1	110
18	Non-coding RNAs in Mesenchymal Stem Cell-Derived Extracellular Vesicles: Deciphering Regulatory Roles in Stem Cell Potency, Inflammatory Resolve, and Tissue Regeneration. Frontiers in Genetics, 2017, 8, 161.	1.1	90

#	Article	IF	CITATIONS
19	Delivery of Oligonucleotide Therapeutics: Chemical Modifications, Lipid Nanoparticles, and Extracellular Vesicles. ACS Nano, 2021, 15, 13993-14021.	7.3	74
20	Microaerobic glycerol formation in Saccharomyces cerevisiae. Yeast, 2000, 16, 1483-1495.	0.8	68
21	Functional Relevance of the IL-23–IL-17 Axis in LungsIn Vivo. American Journal of Respiratory Cell and Molecular Biology, 2007, 36, 442-451.	1.4	68
22	Improved ethanol production by glycerol-3-phosphate dehydrogenase mutants of Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 1998, 50, 434-439.	1.7	61
23	Extracellular vesicles in ovarian cancer: applications to tumor biology, immunotherapy and biomarker discovery. Expert Review of Proteomics, 2016, 13, 395-409.	1.3	60
24	Anaerobicity Prepares Saccharomyces cerevisiae Cells for Faster Adaptation to Osmotic Shock. Eukaryotic Cell, 2004, 3, 1381-1390.	3.4	57
25	NADH-reductive stress in Saccharomyces cerevisiae induces the expression of the minor isoform of glyceraldehyde-3-phosphate dehydrogenase (TDH1). Current Genetics, 2004, 45, 90-95.	0.8	48
26	Highly skewed distribution of miRNAs and proteins between colorectal cancer cells and their exosomes following Cetuximab treatment: biomolecular, genetic and translational implications. Oncoscience, 2014, 1, 132-157.	0.9	42
27	Delivery of Small Interfering RNAs to Cells via Exosomes. Methods in Molecular Biology, 2016, 1364, 105-125.	0.4	30
28	The DNA Ligands Influence the Interactions between the Herpes Simplex Virus 1 Origin Binding Protein and the Single Strand DNA-binding Protein, ICP-8. Journal of Biological Chemistry, 1995, 270, 19028-19034.	1.6	27
29	Pathogenic Transdifferentiation of Th 17 Cells Contribute to Perpetuation of Rheumatoid Arthritis during Anti-TNF Treatment. Molecular Medicine, 2015, 21, 536-543.	1.9	26
30	Radiological features of experimental staphylococcal septic arthritis by micro computed tomography scan. PLoS ONE, 2017, 12, e0171222.	1.1	20
31	Lipoproteins Are Responsible for the Pro-Inflammatory Property of Staphylococcus aureus Extracellular Vesicles. International Journal of Molecular Sciences, 2021, 22, 7099.	1.8	17
32	TLR3 impairment in human newborns. Journal of Leukocyte Biology, 2013, 94, 1003-1011.	1.5	16
33	N-Acetyl Cysteine, Selenium, and Ascorbic Acid Rescue Diabetic Cardiac Hypertrophy via Mitochondrial-Associated Redox Regulators. Molecules, 2021, 26, 7285.	1.7	9
34	An improved gas distribution system for anaerobic screening of multiple microbial cultures. Journal of Microbiological Methods, 2001, 47, 51-57.	0.7	7