
Marc R Freeman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8847466/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Astrocytic GABA transporter controls sleep by modulating GABAergic signaling in Drosophila circadian neurons. Current Biology, 2022, 32, 1895-1908.e5.	1.8	10
2	TSG101 negatively regulates mitochondrial biogenesis in axons. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	15
3	Genetic diversity of axon degenerative mechanisms in models of Parkinson's disease. Neurobiology of Disease, 2021, 155, 105368.	2.1	16
4	An ELISA-based method for rapid genetic screens in <i>Drosophila</i> . Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	1
5	TrpML-mediated astrocyte microdomain Ca2+ transients regulate astrocyte–tracheal interactions. ELife, 2020, 9, .	2.8	12
6	Neural JNK3 regulates blood flow recovery after hindlimb ischemia in mice via an Egr1/Creb1 axis. Nature Communications, 2019, 10, 4223.	5.8	22
7	Glutathione S-Transferase Regulates Mitochondrial Populations in Axons through Increased Glutathione Oxidation. Neuron, 2019, 103, 52-65.e6.	3.8	47
8	Polymodal Nociception in Drosophila Requires Alternative Splicing of TrpA1. Current Biology, 2019, 29, 3961-3973.e6.	1.8	31
9	Transcription factor Pebbled/RREB1 regulates injury-induced axon degeneration. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1358-1363.	3.3	43
10	Loss of Sarm1 does not suppress motor neuron degeneration in the SOD1G93A mouse model of amyotrophic lateral sclerosis. Human Molecular Genetics, 2018, 27, 3761-3771.	1.4	45
11	Axon degeneration induces glial responses through Draper-TRAF4-JNK signalling. Nature Communications, 2017, 8, 14355.	5.8	53
12	Axon Death Pathways Converge on Axundead to Promote Functional and Structural Axon Disassembly. Neuron, 2017, 95, 78-91.e5.	3.8	86
13	Attenuated traumatic axonal injury and improved functional outcome after traumatic brain injury in mice lacking <i>Sarm1</i> . Brain, 2016, 139, 1094-1105.	3.7	155
14	Dendrites actively restrain axon outgrowth and regeneration. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5465-5466.	3.3	2
15	Prevalent presence of periodic actin–spectrin-based membrane skeleton in a broad range of neuronal cell types and animal species. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 6029-6034.	3.3	145
16	Neuromodulators signal through astrocytes to alter neural circuit activity and behaviour. Nature, 2016, 539, 428-432.	13.7	189
17	Letting Go of JuNK by Disassembly of Adhesive Complexes. Neuron, 2015, 88, 848-850.	3.8	2
18	<i>Drosophila</i> Central Nervous System Glia. Cold Spring Harbor Perspectives in Biology, 2015, 7, a020552.	2.3	216

2

MARC R FREEMAN

#	Article	IF	CITATIONS
19	Age-Dependent TDP-43-Mediated Motor Neuron Degeneration Requires GSK3, hat-trick, and xmas-2. Current Biology, 2015, 25, 2130-2136.	1.8	71
20	PI3K Signaling and Stat92E Converge to Modulate Glial Responsiveness to Axonal Injury. PLoS Biology, 2014, 12, e1001985.	2.6	55
21	Diverse cellular and molecular modes of axon degeneration. Trends in Cell Biology, 2014, 24, 515-523.	3.6	118
22	DRK/DOS/SOS converge with Crk/Mbc/dCed-12 to activate Rac1 during glial engulfment of axonal debris. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 12544-12549.	3.3	31
23	Rapid in vivo forward genetic approach for identifying axon death genes in <i>Drosophila</i> . Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 9965-9970.	3.3	70
24	Neuron-Glia Interactions through the Heartless FGF Receptor Signaling Pathway Mediate Morphogenesis of Drosophila Astrocytes. Neuron, 2014, 83, 388-403.	3.8	197
25	Astrocytes eyeball axonal mitochondria. Science, 2014, 345, 385-386.	6.0	11
26	Activity-dependent regulation of astrocyte GAT levels during synaptogenesis. Nature Neuroscience, 2014, 17, 1340-1350.	7.1	109
27	Astrocytes engage unique molecular programs to engulf pruned neuronal debris from distinct subsets of neurons. Genes and Development, 2014, 28, 20-33.	2.7	191
28	Signaling mechanisms regulating Wallerian degeneration. Current Opinion in Neurobiology, 2014, 27, 224-231.	2.0	59
29	Silencing of drpr leads to muscle and brain degeneration in adult Drosophila. FASEB Journal, 2013, 27, 873.14.	0.2	0
30	Whole Genome Sequencing and a New Bioinformatics Platform Allow for Rapid Gene Identification in D. melanogaster EMS Screens. Biology, 2012, 1, 766-777.	1.3	10
31	WldS Prevents Axon Degeneration through Increased Mitochondrial Flux and Enhanced Mitochondrial Ca2+ Buffering. Current Biology, 2012, 22, 596-600.	1.8	135
32	Specification and Morphogenesis of Astrocytes. Science, 2010, 330, 774-778.	6.0	371
33	Ensheathing Glia Function as Phagocytes in the Adult <i>Drosophila</i> Brain. Journal of Neuroscience, 2009, 29, 4768-4781.	1.7	300
34	The scoop on the fly brain: glial engulfment functions in <i>Drosophila</i> . Neuron Glia Biology, 2007, 3, 63-74.	2.0	37
35	Glial cell biology in Drosophila and vertebrates. Trends in Neurosciences, 2006, 29, 82-90.	4.2	223
36	Sculpting the nervous system: glial control of neuronal development. Current Opinion in Neurobiology, 2006, 16, 119-125.	2.0	78

#	Article	IF	CITATIONS
37	Glial Control of Synaptogenesis. Cell, 2005, 120, 292-293.	13.5	22
38	Glial (and Neuronal) Cells Missing. Neuron, 2005, 48, 163-165.	3.8	0