Olga N Ponamoreva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8847405/publications.pdf Version: 2024-02-01

687220 752573 38 460 13 20 citations h-index g-index papers 41 41 41 484 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Yeast-based self-organized hybrid bio-silica sol–gels for the design of biosensors. Biosensors and Bioelectronics, 2015, 67, 321-326.	5.3	44
2	Glycolipids of Pseudomonas and Rhodococcus oil-degrading bacteria used in bioremediation preparations: Formation and structure. Process Biochemistry, 2013, 48, 931-935.	1.8	41
3	Characterization of biosurfactants produced by the oil-degrading bacterium Rhodococcus erythropolis S67 at low temperature. World Journal of Microbiology and Biotechnology, 2018, 34, 20.	1.7	39
4	Alteromonas australica sp. nov., isolated from the Tasman Sea. Antonie Van Leeuwenhoek, 2013, 103, 877-884.	0.7	37
5	Biosensor analyzer for BOD index express control on the basis of the yeast microorganisms Candida maltosa, Candida blankii, and Debaryomyces hansenii. Enzyme and Microbial Technology, 2012, 50, 215-220.	1.6	28
6	Use of biocompatible redox-active polymers based on carbon nanotubes and modified organic matrices for development of a highly sensitive BOD biosensor. Enzyme and Microbial Technology, 2021, 143, 109706.	1.6	26
7	Bioelectrocatalytic Oxidation of Glucose by Immobilized BacteriaGluconobacter oxydans. Evaluation of Water-Insoluble Mediator Efficiency. Electroanalysis, 2006, 18, 2023-2029.	1.5	22
8	Silica sol-gel encapsulated methylotrophic yeast as filling of biofilters for the removal of methanol from industrial wastewater. Enzyme and Microbial Technology, 2016, 92, 94-98.	1.6	21
9	Testing of Bacteria Gluconobacter oxydans and Electron Transport Mediators Composition for Application in Biofuel Cell. Electroanalysis, 2006, 18, 2030-2034.	1.5	19
10	Bioanode for a microbial fuel cell based on Gluconobacter oxydans immobilized into a polymer matrix. Applied Biochemistry and Microbiology, 2014, 50, 637-643.	0.3	17
11	Transformation of Iowâ€molecular linear caprolactam oligomers by caprolactamâ€degrading bacteria. Journal of Chemical Technology and Biotechnology, 2012, 87, 1284-1290.	1.6	16
12	Biofuel cell anode based on the Gluconobacter oxydans bacteria cells and 2,6-dichlorophenolindophenol as an electron transport mediator. Russian Journal of Electrochemistry, 2006, 42, 403-404.	0.3	14
13	Interaction of Ferrocene Mediators with Gluconobacter oxydans Immobilized Whole Cells and Membrane Fractions in Oxidation of Ethanol. Electroanalysis, 2012, 24, 924-930.	1.5	13
14	Three-Dimensional Organization of Self-Encapsulating <i>Gluconobacter oxydans</i> Bacterial Cells. ACS Omega, 2017, 2, 8099-8107.	1.6	13
15	Effect of polyethylene glycol additives on structure, stability, and biocatalytic activity of ormosil sol–gel encapsulated yeast cells. Journal of Sol-Gel Science and Technology, 2018, 88, 1-5.	1.1	11
16	Yeast Debaryomyces hansenii within ORMOSIL Shells as a Heterogeneous Biocatalyst. Applied Biochemistry and Microbiology, 2018, 54, 736-742.	0.3	9
17	A kinetic approach to the formation of two-mediator systems for developing microbial biosensors as exemplified by a rapid biochemical oxygen demand assay. 3 Biotech, 2021, 11, 222.	1.1	9
18	Synthesis of organosilicon sol-gel matrices and preparation of heterogeneous biocatalysts based on them. Russian Journal of Applied Chemistry, 2014, 87, 761-766.	0.1	8

Olga N Ponamoreva

#	Article	IF	CITATIONS
19	Halogenation of metalloporphyrins. Russian Journal of Bioorganic Chemistry, 2000, 26, 423-428.	0.3	7
20	A Biosensor Based Microorganisms Immobilized in Layer-by-Layer Films for the Determination of Biochemical Oxygen Demand. Applied Biochemistry and Microbiology, 2021, 57, 133-141.	0.3	7
21	Expression of thermophilic two-domain laccase from <i>Catenuloplanes japonicus</i> in <i>Escherichia coli</i> and its activity against triarylmethane and azo dyes. PeerJ, 2021, 9, e11646.	0.9	7
22	Application of organosilicate matrix based on methyltriethoxysilane, PVA and bacteria Paracoccus yeei to create a highly sensitive BOD. 3 Biotech, 2021, 11, 331.	1.1	7
23	Impact of hydrophilic polymers in organosilica matrices on structure, stability, and biocatalytic activity of immobilized methylotrophic yeast used as biofilter bed. Enzyme and Microbial Technology, 2021, 150, 109879.	1.6	7
24	Acidophilic Microorganisms Leptospirillum sp., Acidithiobacillus sp., Ferroplasma sp. As a Cathodic Bioagents in a MFC. Geomicrobiology Journal, 2021, 38, 340-346.	1.0	7
25	A porphyrin chlorination reaction. Mendeleev Communications, 1998, 8, 187-188.	0.6	5
26	Biohybrid of methylotrophic yeast and organically modified silica gels from sol–gel chemistry of tetraethoxysilane and dimethyldiethoxysilane. Journal of Sol-Gel Science and Technology, 2019, 92, 359-366.	1.1	5
27	Bioelectrochemical processes of oxidation of dicarboxylic amino acids by strain Micrococcus luteus 1-I in a biofuel cell. IOP Conference Series: Earth and Environmental Science, 2021, 808, 012038.	0.2	4
28	Efficiency of bioelectrocatalytic oxidation of ethanol by whole cells and membrane fractions of Gluconobacter Oxydans bacteria in the presence of mediators of ferrocene series. Russian Journal of Electrochemistry, 2010, 46, 1408-1413.	0.3	3
29	Purification and characterization of methanol dehydrogenase of Methylobacterium nodulans rhizosphere phytosymbionts. Applied Biochemistry and Microbiology, 2012, 48, 546-551.	0.3	3
30	Transformation of oil and hexadecane in soil by microbial preparations and earthworms. Bioremediation Journal, 2021, 25, 159-168.	1.0	2
31	Transformation of low-molecular linear caprolactam oligomers by the caprolactam-degrading bacterium Pseudomonas putida BS394(pBS268). Microbiology, 2010, 79, 321-326.	0.5	1
32	Effect of Low Temperature on Hexadecane Biodegradation by Oil-Degrading Bacteria Rhodoccocus sp. X5 Capable of Producing Glycolipid Biosurfactants. Biotekhnologiya, 2017, 33, 49-56.	0.5	1
33	Renewable Bio-anodes for Microbial Fuel Cells. , 2018, , 1-16.		1
34	Microorganisms of Microbial Mats from an Alkaline Hot Spring of Baikal Rift Zone as Bioagents in a Biofuel Cell. Geomicrobiology Journal, 2022, 39, 566-576.	1.0	1
35	Acidophilic chemolithotrophic microorganisms: prospects for use in biohydrometallurgy and microbial fuel cells. IzvestiĢ Vuzov: PrikladnaĢ HimiĢ I BiotehnologiĢ, 2021, 11, 34-52.	0.1	Ο
36	Possibilities of Using Phytoenergy Systems in the Ecological Rehabilitation of Contaminated Areas of the Baikal Region. IOP Conference Series: Earth and Environmental Science, 2021, 720, 012050.	0.2	0

0

#	Article	IF	CITATIONS
37	Novel biocatalyst from Microthielavia ovispora VKM F-1735 for industrial dye decolorization in the absence of mediators. Process Biochemistry, 2021, 109, 186-197.	1.8	0

Renewable Bio-anodes for Microbial Fuel Cells. , 2019, , 1167-1182.