Prafulla Kumar Sahoo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8847371/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multi-parametric groundwater quality and human health risk assessment vis-Ã-vis hydrogeochemical process in an Agri-intensive region of Indus basin, Punjab, India. Toxin Reviews, 2022, 41, 768-784.	1.5	9
2	Occurrence, distribution, and environmental risk assessment of heavy metals in the vicinity of Fe-ore mines: a global overview. Toxin Reviews, 2022, 41, 675-698.	1.5	3
3	Urban to rural COVIDâ€19 progression in India: The role of massive migration and the challenge to India's traditional labour force policies. International Journal of Health Planning and Management, 2022, 37, 528-535.	0.7	8
4	Copper mining in the eastern Amazon: an environmental perspective on potentially toxic elements. Environmental Geochemistry and Health, 2022, 44, 1767-1781.	1.8	11
5	A Holocene record of floodplain development in the northernmost portion of the Araguaia Belt, southeastern Amazonia. Catena, 2022, 209, 105798.	2.2	0
6	Meta-analysis of uranium contamination in groundwater of the alluvial plains of Punjab, northwest India: Status, health risk, and hydrogeochemical processes. Science of the Total Environment, 2022, 807, 151753.	3.9	29
7	Hydroclimate and vegetation changes in southeastern Amazonia over the past â^1⁄425,000 years. Quaternary Science Reviews, 2022, 284, 107466.	1.4	6
8	Soil-sediment linkage and trace element contamination in forested/deforested areas of the Itacaiúnas River Watershed, Brazil: To what extent land-use change plays a role?. Science of the Total Environment, 2022, 828, 154327.	3.9	4
9	Geochemical assessment of groundwater contaminants and associated health risks in the Shivalik region of Punjab, India. Toxin Reviews, 2021, 40, 928-944.	1.5	10
10	Source apportionment, chemometric pattern recognition and health risk assessment of groundwater from southwestern Punjab, India. Environmental Geochemistry and Health, 2021, 43, 733-755.	1.8	52
11	Pre-to-post lockdown impact on air quality and the role of environmental factors in spreading the COVID-19 cases - a study from a worst-hit state of India. International Journal of Biometeorology, 2021, 65, 205-222.	1.3	47
12	COVID-19 pandemic: An outlook on its impact on air quality and its association with environmental variables in major cities of Punjab and Chandigarh, India. Environmental Forensics, 2021, 22, 143-154.	1.3	19
13	Ground/drinking water contaminants and cancer incidence: A case study of rural areas of South West Punjab, India. Human and Ecological Risk Assessment (HERA), 2021, 27, 205-226.	1.7	40
14	Sustainable remediation of heavy metals. , 2021, , 571-610.		0
15	Lake sedimentary processes and vegetation changes over the last 45k cal a <scp>bp</scp> in the uplands of southâ€eastern Amazonia. Journal of Quaternary Science, 2021, 36, 255-272.	1.1	9
16	COVID-19 lockdown: a rare opportunity to establish baseline pollution level of air pollutants in a megacity, India. International Journal of Environmental Science and Technology, 2021, 18, 1269-1286.	1.8	10
17	Integrated Geochemical Assessment of Soils and Stream Sediments to Evaluate Source-Sink Relationships and Background Variations in the Parauapebas River Basin, Eastern Amazon. Soil Systems, 2021, 5, 21.	1.0	9
18	Bioavailability of copper and nickel in naturally metal-enriched soils of Carajás Mining Province, Eastern Amazon, Brazil. Environmental Monitoring and Assessment, 2021, 193, 256.	1.3	6

#	Article	IF	CITATIONS
19	Hydrochemical characteristics and human health risk assessment of groundwater in the Shivalik region of Sutlej basin, Punjab, India. Arabian Journal of Geosciences, 2021, 14, 1.	0.6	7
20	Impact of Environmental Indicators on the COVID-19 Pandemic in Delhi, India. Pathogens, 2021, 10, 1003.	1.2	8
21	Geochemical mapping in stream sediments of the Carajás Mineral Province, part 2: Multi-element geochemical signatures using Compositional Data Analysis (CoDA). Journal of South American Earth Sciences, 2021, 110, 103361.	0.6	10
22	Source and background threshold values of potentially toxic elements in soils by multivariate statistics and GIS-based mapping: a high density sampling survey in the Parauapebas basin, Brazilian Amazon. Environmental Geochemistry and Health, 2020, 42, 255-282.	1.8	31
23	Multivariate statistics and geochemical approaches for understanding source-sink relationship - a case study from close-basin lakes in Southeast Amazon. Journal of South American Earth Sciences, 2020, 99, 102497.	0.6	7
24	The sustainability index of the physical mining Environment in protected areas, Eastern Amazon. Environmental and Sustainability Indicators, 2020, 8, 100074.	1.7	7
25	Regional-scale mapping for determining geochemical background values in soils of the Itacaiúnas River Basin, Brazil: The use of compositional data analysis (CoDA). Geoderma, 2020, 376, 114504.	2.3	39
26	The role of fault reactivation in the development of tropical montane lakes. Earth Surface Processes and Landforms, 2020, 45, 3732-3746.	1.2	4
27	Is the transmission of novel coronavirus disease (COVID-19) weather dependent?. Journal of the Air and Waste Management Association, 2020, 70, 1061-1064.	0.9	17
28	Geochemical mapping in stream sediments of the Carajás Mineral Province: Background values for the Itacaiúnas River watershed, Brazil. Applied Geochemistry, 2020, 118, 104608.	1.4	24
29	Water chemistry and estimation of background levels of elements in surface water bodies from a protected area in the vicinity of Fe deposits, Southeastern Amazon. Environmental Forensics, 2020, 21, 176-194.	1.3	4
30	Quantification of groundwater–agricultural soil quality and associated health risks in the agri-intensive Sutlej River Basin of Punjab, India. Environmental Geochemistry and Health, 2020, 42, 4245-4268.	1.8	16
31	Geochemical relationship and translocation mechanism of arsenic in rice plants: A case study from health prone south west Punjab, India. Groundwater for Sustainable Development, 2020, 10, 100333.	2.3	26
32	High resolution hydrogeochemical survey and estimation of baseline concentrations of trace elements in surface water of the Itacaiúnas River Basin, southeastern Amazonia: Implication for environmental studies. Journal of Geochemical Exploration, 2019, 205, 106321.	1.5	38
33	Geochemical mapping and background concentrations of iron and potentially toxic elements in active stream sediments from CarajĄ̃js, Brazil – implication for risk assessment. Journal of South American Earth Sciences, 2019, 92, 151-166.	0.6	19
34	Geochemical mapping and estimation of background concentrations in soils of CarajÃis mineral province, eastern Amazonian Craton, Brazil. Geochemistry: Exploration, Environment, Analysis, 2019, 19, 431-447.	0.5	10
35	The role of protected and deforested areas in the hydrological processes of Itacaiúnas River Basin, eastern Amazonia. Journal of Environmental Management, 2019, 235, 489-499.	3.8	36
36	Holocene history of a lake filling and vegetation dynamics of the Serra Sul dos Carajás, southeast Amazonia. Anais Da Academia Brasileira De Ciencias, 2019, 91, e20160916.	0.3	8

#	Article	IF	CITATIONS
37	Statistical analysis of lake sediment geochemical data for understanding surface geological factors and processes: An example from Amazonian upland lakes, Brazil. Catena, 2019, 175, 47-62.	2.2	24
38	Differences in precipitation and evapotranspiration between forested and deforested areas in the Amazon rainforest using remote sensing data. Environmental Earth Sciences, 2018, 77, 1.	1.3	19
39	Modern pollen rain raises doubts about the intensity and extension of the Last Glacial Cycle in Carajás: A reply to D'Apolito et al Holocene, 2018, 28, 332-335.	0.9	3
40	Morphology and morphometry of upland lakes over lateritic crust, Serra dos Carajás, southeastern Amazon region. Anais Da Academia Brasileira De Ciencias, 2018, 90, 1309-1325.	0.3	24
41	Geochemical distribution and threshold values determination of heavy metals in stream water in the sub-basins of Vermelho and Sororó rivers, Itacaiúnas River watershed, Eastern Amazon, Brazil. Geochimica Brasiliensis, 2018, 32, 180-198.	0.4	22
42	Environmental and vegetation changes in southeastern Amazonia during the late Pleistocene and Holocene. Quaternary International, 2017, 449, 83-105.	0.7	24
43	Modern pollen rain as a background for palaeoenvironmental studies in the Serra dos Carajás, southeastern Amazonia. Holocene, 2017, 27, 1055-1066.	0.9	20
44	Anthropogenic contamination and risk assessment of heavy metals in stream sediments influenced by acid mine drainage from a northeast coalfield, India. Bulletin of Engineering Geology and the Environment, 2017, 76, 537-552.	1.6	23
45	Geochemical characterization of the largest upland lake of the Brazilian Amazonia: Impact of provenance and processes. Journal of South American Earth Sciences, 2017, 80, 541-558.	0.6	18
46	Geochemical appraisal of mine discharge and tailing at Malanjkhand copper mine, India. Journal of the Geological Society of India, 2017, 90, 209-216.	0.5	5
47	Limnological characteristics and planktonic diversity of five tropical upland lakes from Brazilian Amazon. Annales De Limnologie, 2017, 53, 467-483.	0.6	27
48	Recent Developments for Remediating Acidic Mine Waters Using Sulfidogenic Bacteria. BioMed Research International, 2017, 2017, 1-17.	0.9	34
49	Influence of seasonal variation on the hydro-biogeochemical characteristics of two upland lakes in the Southeastern Amazon, Brazil. Anais Da Academia Brasileira De Ciencias, 2016, 88, 2211-2227.	0.3	36
50	Late Quaternary environmental and climate changes registered in lacustrine sediments of the Serra Sul de Carajás, southâ€east Amazonia. Journal of Quaternary Science, 2016, 31, 61-74.	1.1	24
51	Recovery of metals and other beneficial products from coal fly ash: a sustainable approach for fly ash management. International Journal of Coal Science and Technology, 2016, 3, 267-283.	2.7	111
52	Geochemistry of upland lacustrine sediments from Serra dos Carajás, Southeastern Amazon, Brazil: Implications for catchment weathering, provenance, and sedimentary processes. Journal of South American Earth Sciences, 2016, 72, 178-190.	0.6	29
53	Geochemical characteristics and mode of occurrence of trace elements in coal at West Bokaro coalfield. International Journal of Coal Science and Technology, 2016, 3, 399-406.	2.7	12
54	Managing Groundwater Nitrate Contamination from Livestock Farms: Implication for Nitrate Management Guidelines. Current Pollution Reports, 2016, 2, 178-187.	3.1	68

#	Article	IF	CITATIONS
55	Trace Elements in Soils around Coal Mines: Current Scenario, Impact and Available Techniques for Management. Current Pollution Reports, 2016, 2, 1-14.	3.1	67
56	Use of multi-proxy approaches to determine the origin and depositional processes in modern lacustrine sediments: Carajás Plateau, Southeastern Amazon, Brazil. Applied Geochemistry, 2015, 52, 130-146.	1.4	39
57	Source and distribution of pollen and spores in surface sediments of a plateau lake in southeastern Amazonia. Quaternary International, 2014, 352, 181-196.	0.7	31
58	Utilization of ochre as an adsorbent to remove Pb(II) and Cu(II) from contaminated aqueous media. Environmental Earth Sciences, 2014, 72, 243-250.	1.3	9
59	Geochemical characterization of coal and waste rocks from a high sulfur bearing coalfield, India: Implication for acid and metal generation. Journal of Geochemical Exploration, 2014, 145, 135-147.	1.5	31
60	Arsenic Fate and Transport in the Groundwater-Soil-Plant System: An Understanding of Suitable Rice Paddy Cultivation in Arsenic Enriched Areas. , 2014, , 21-44.		6
61	Evaluation of the use of an alkali modified fly ash as a potential adsorbent for the removal of metals from acid mine drainage. Applied Water Science, 2013, 3, 567-576.	2.8	59
62	Relations of arsenic concentrations among groundwater, soil and paddy from an alluvial plain of Korea. Geosciences Journal, 2013, 17, 363-370.	0.6	10
63	A review of the arsenic concentration in paddy rice from the perspective of geoscience. Geosciences Journal, 2013, 17, 107-122.	0.6	72
64	Inhibition of Acid Mine Drainage from a Pyrite-rich Mining Waste Using Industrial By-products: Role of Neo-formed Phases. Water, Air, and Soil Pollution, 2013, 224, 1.	1.1	16
65	Current Approaches for Mitigating Acid Mine Drainage. Reviews of Environmental Contamination and Toxicology, 2013, 226, 1-32.	0.7	30
66	Metal behavior in sediment associated with acid mine drainage stream: Role of pH. Journal of Geochemical Exploration, 2013, 124, 230-237.	1.5	72
67	Mineralogy of Fe-Precipitates and Their Role in Metal Retention from an Acid Mine Drainage Site in India. Mine Water and the Environment, 2012, 31, 344-352.	0.9	14
68	Geochemical characteristics of coal mine discharge vis-Ã-vis behavior of rare earth elements at Jaintia Hills coalfield, northeastern India. Journal of Geochemical Exploration, 2012, 112, 235-243.	1.5	88
69	Geochemistry of ochreous precipitates from coal mine drainage in India. Environmental Earth Sciences, 2010, 61, 723-731.	1.3	14
70	Influence of different forms of acidities on soil microbiological properties and enzyme activities at an acid mine drainage contaminated site. Journal of Hazardous Materials, 2010, 179, 966-975.	6.5	29
71	Hydrogeochemical characteristics of acid mine drainage and water pollution at Makum Coalfield, India. Journal of Geochemical Exploration, 2010, 105, 75-82.	1.5	122