
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8847158/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mineral composition and ash content of six major energy crops. Biomass and Bioenergy, 2008, 32, 216-223.	5.7	348
2	Landâ€use change to bioenergy production in <scp>E</scp> urope: implications for the greenhouse gas balance and soil carbon. GCB Bioenergy, 2012, 4, 372-391.	5.6	298
3	Characterization and antimicrobial activity of essential oils of industrial hemp varieties (Cannabis) Tj ETQq1 1 0	.784314 rg 2.2	gBT /Overlock 217
4	Root distribution and soil moisture retrieval in perennial and annual energy crops in Northern Italy. Agriculture, Ecosystems and Environment, 2009, 132, 252-259.	5.3	168
5	Life cycle assessment of different bioenergy production systems including perennial and annual crops. Biomass and Bioenergy, 2011, 35, 4868-4878.	5.7	158
6	Energy crops in rotation. A review. Biomass and Bioenergy, 2011, 35, 12-25.	5.7	148
7	Are we ready to cultivate sweet sorghum as a bioenergy feedstock? A review on field management practices. Biomass and Bioenergy, 2012, 40, 1-12.	5.7	144
8	Direct and indirect landâ€use competition issues for energy crops and their sustainable production – an overview. Biofuels, Bioproducts and Biorefining, 2010, 4, 692-704.	3.7	140
9	Agronomic aspects of future energy crops in Europe. Biofuels, Bioproducts and Biorefining, 2010, 4, 674-691.	3.7	125
10	Challenges and opportunities for new industrial oilseed crops in EU-27: A review. Industrial Crops and Products, 2013, 50, 580-595.	5.2	122
11	Marginal Agricultural Land Low-Input Systems for Biomass Production. Energies, 2019, 12, 3123.	3.1	113
12	Agronomic performance and seed quality attributes of Camelina (Camelina sativa L. crantz) in multi-environment trials across Europe and Canada. Industrial Crops and Products, 2017, 107, 602-608.	5.2	100
13	Cradle-to-farm gate life cycle assessment in perennial energy crops. European Journal of Agronomy, 2009, 31, 77-84.	4.1	95
14	The contribution of switchgrass in reducing <scp>GHG</scp> emissions. GCB Bioenergy, 2012, 4, 420-434.	5.6	87
15	Land use change from C3 grassland to C4 <i>Miscanthus</i> : effects on soil carbon content and estimated mitigation benefit after six years. GCB Bioenergy, 2014, 6, 360-370.	5.6	83
16	Spatial variability of switchgrass (Panicum virgatum L.) yield as related to soil parameters in a small field. Field Crops Research, 2007, 101, 232-239.	5.1	78
17	Water uptake efficiency and above- and belowground biomass development of sweet sorghum and maize under different water regimes. Plant and Soil, 2012, 351, 47-60.	3.7	76
18	Managing a secondâ€generation crop portfolio through sustainable intensification: Examples from the <scp>USA</scp> and the <scp>EU</scp> . Biofuels, Bioproducts and Biorefining, 2013, 7, 702-714.	3.7	70

#	Article	IF	CITATIONS
19	Non-structural carbohydrates and fibre components in sweet and fibre sorghum as affected by low and normal input techniques. Industrial Crops and Products, 2004, 20, 111-118.	5.2	69
20	Camelina, an ancient oilseed crop actively contributing to the rural renaissance in Europe. A review. Agronomy for Sustainable Development, 2021, 41, 1.	5.3	68
21	Comparison of the energy performance of fibre sorghum, sweet sorghum and wheat monocultures in northern Italy. European Journal of Agronomy, 2003, 19, 35-43.	4.1	64
22	Long-Term Yields of Switchgrass, Giant Reed, and Miscanthus in the Mediterranean Basin. Bioenergy Research, 2015, 8, 1492-1499.	3.9	62
23	Environmental impact assessment of perennial crops cultivation on marginal soils in the Mediterranean Region. Biomass and Bioenergy, 2018, 111, 174-186.	5.7	62
24	Growth, fructan yield, and quality of chicory (Cichorium intybus L.) as related to photosynthetic capacity, harvest time, and water regime. Journal of Experimental Botany, 2005, 56, 1389-1395.	4.8	61
25	Life Cycle Assessment of Bioenergy and Bio-Based Products from Perennial Grasses Cultivated on Marginal Land in the Mediterranean Region. Bioenergy Research, 2015, 8, 1548-1561.	3.9	48
26	Perennial Grass Production Opportunities on Marginal Mediterranean Land. Bioenergy Research, 2015, 8, 1523-1537.	3.9	48
27	Shifting sowing of camelina from spring to autumn enhances the oil quality for bio-based applications in response to temperature and seed carbon stock. Industrial Crops and Products, 2019, 137, 66-73.	5.2	48
28	Sixteen-Year Biomass Yield and Soil Carbon Storage of Giant Reed (Arundo donax L.) Grown Under Variable Nitrogen Fertilization Rates. Bioenergy Research, 2016, 9, 248-256.	3.9	46
29	Bio-remediation of Pb and Cd polluted soils by switchgrass: A case study in India. International Journal of Phytoremediation, 2016, 18, 704-709.	3.1	43
30	What to harvest when? Autumn, winter, annual and biennial harvesting of giant reed, miscanthus and switchgrass in northern and southern Mediterranean area. Industrial Crops and Products, 2015, 75, 129-134.	5.2	38
31	The bio-based economy can serve as the springboard for camelina and crambe to quit the limbo. OCL - Oilseeds and Fats, Crops and Lipids, 2016, 23, D504.	1.4	37
32	Comparative analysis of pyrolysate from herbaceous and woody energy crops by Py-GC with atomic emission and mass spectrometric detection. Journal of Analytical and Applied Pyrolysis, 2010, 88, 175-180.	5.5	34
33	Chicory and Jerusalem artichoke productivity in different areas of Italy, in relation to water availability and time of harvest. Italian Journal of Agronomy, 2006, 1, 291.	1.0	31
34	Photosynthetic response of sweet sorghum to drought and reâ€watering at different growth stages. Physiologia Plantarum, 2013, 149, 56-66.	5.2	31
35	Eighty Years of Studies on Industrial Hemp in the Po Valley (19302010). Journal of Natural Fibers, 2012, 9, 180-196.	3.1	30
36	Comparative studies on several castor (Ricinus communis L.) hybrids: Growth, yields, seed oil and biomass characterization. Industrial Crops and Products, 2015, 75, 8-13.	5.2	28

#	Article	IF	CITATIONS
37	Dedicated crops for advanced biofuels: Consistent and diverging agronomic points of view between the <scp>USA</scp> and the <scp>EU</scp> â€27. Biofuels, Bioproducts and Biorefining, 2013, 7, 715-731.	3.7	27
38	The Evolution of Switchgrass as an Energy Crop. Green Energy and Technology, 2012, , 1-28.	0.6	27
39	Turning a burden into an opportunity: Pennycress (Thlaspi arvense L.) a new oilseed crop for biofuel production. Biomass and Bioenergy, 2019, 130, 105354.	5.7	25
40	New Insights into the Propagation Methods of Switchgrass, Miscanthus and Giant Reed. Bioenergy Research, 2015, 8, 1480-1491.	3.9	22
41	Winter camelina root characteristics and yield performance under contrasting environmental conditions. Field Crops Research, 2020, 252, 107794.	5.1	22
42	Variation in carbon isotope discrimination during growth and at different organs in sugar beet (Beta) Tj ETQq0 0	0 ự BT /O	verlock 10 Tf
43	Conclusive remarks. Reliability and comparability of chlorophyll fluorescence data from several field teams. Environmental and Experimental Botany, 2011, 73, 116-119.	4.2	21
44	Model Simulation of Cumulative Carbon Sequestration by Switchgrass (Panicum Virgatum L.) in the Mediterranean Area Using the DAYCENT Model. Bioenergy Research, 2015, 8, 1512-1522.	3.9	20
45	Deep root growth, ABA adjustments and root water uptake response to soil water deficit in giant reed. Annals of Botany, 2019, 124, 605-615.	2.9	20
46	Nitrogen Fertilization Management of Switchgrass, Miscanthus and Giant Reed: A Review. Advances in Agronomy, 2019, 153, 87-119.	5.2	20
47	Critical review on energy balance of agricultural systems. Biofuels, Bioproducts and Biorefining, 2010, 4, 423-446.	3.7	19
48	Winter camelina seed quality in different growing environments across Northern America and Europe. Industrial Crops and Products, 2021, 169, 113639.	5.2	19
49	Salinity effects on germination, seedlings and full-grown plants of upland and lowland switchgrass cultivars. Biomass and Bioenergy, 2019, 120, 273-280.	5.7	18
50	Internal conductance under different light conditions along the plant profile of Ethiopian mustard (Brassica carinata A. Brown.). Journal of Experimental Botany, 2009, 60, 2341-2350.	4.8	17
51	Comparison of new castor (Ricinus communis L.) genotypes in the mediterranean area and possible valorization of residual biomass for insect rearing. Industrial Crops and Products, 2017, 107, 581-587.	5.2	16
52	ls Drought Stress Tolerance Affected by Biotypes and Seed Size in the Emerging Oilseed Crop Camelina?. Agronomy, 2020, 10, 1856.	3.0	15
53	Harvest storage and handling of round and square bales of giant reed and switchgrass: An economic and technical evaluation. Biomass and Bioenergy, 2015, 83, 551-558.	5.7	14
54	Trade-off between harvest date and lignocellulosic crop choice for advanced biofuel production in the Mediterranean area. Industrial Crops and Products, 2019, 138, 111439.	5.2	14

#	Article	IF	CITATIONS
55	Conclusive Results of the European Project OPTIMA: Optimization of Perennial Grasses for Biomass Production in the Mediterranean Area. Bioenergy Research, 2015, 8, 1459-1460.	3.9	13
56	Safflower (Carthamus tinctorius L.) a winter multipurpose oilseed crop for the Mediterranean region: Lesson learnt from on-farm trials. Industrial Crops and Products, 2022, 184, 115042.	5.2	13
57	A simple method to improve the estimation of the relationship between rainfall and crop yield. Agronomy for Sustainable Development, 2007, 27, 255-260.	5.3	12
58	Environmental sustainability of advanced biofuels. Biofuels, Bioproducts and Biorefining, 2013, 7, 638-646.	3.7	12
59	<i>In vitro</i> physical mutagenesis of giant reed (<i>Arundo donax</i> L.). GCB Bioenergy, 2017, 9, 1380-1389.	5.6	12
60	Land-use change from poplar to switchgrass and giant reed increases soil organic carbon. Agronomy for Sustainable Development, 2017, 37, 1.	5.3	12
61	Assessing the Potentials for Nonfood Crops. , 2017, , 219-251.		12
62	Crop Physiology. Green Energy and Technology, 2012, , 55-86.	0.6	12
63	An Integrated Approach to Harvest and Storage of Sweet Sorghum at Farm Scale. Bioenergy Research, 2015, 8, 450-458.	3.9	11
64	Biofuel production and soil <scp>GHG</scp> emissions after landâ€use change to switchgrass and giant reed in the U.S. Southeast. Food and Energy Security, 2018, 7, e00125.	4.3	11
65	Assessment of mutagenized giant reed clones for yield, drought resistance and biomass quality. Biomass and Bioenergy, 2020, 134, 105501.	5.7	11
66	The Importance of Perennial Grasses as a Feedstock for Bioenergy and Bioproducts. , 2018, , 1-33.		10
67	Giant reed genotypes from temperate and arid environments show different response mechanisms to drought. Physiologia Plantarum, 2018, 163, 490-501.	5.2	10
68	Development of a process-based simulation model of camelina seed and oil production: A case study in Northern Italy. Industrial Crops and Products, 2019, 134, 234-243.	5.2	9
69	Untargeted metabolomic analyses reveal the diversity and plasticity of the specialized metabolome in seeds of different <i>Camelina sativa</i> genotypes. Plant Journal, 2022, 110, 147-165.	5.7	9
70	Camelina [Camelina sativa (L.) Crantz] seeds as a multi-purpose feedstock for bio-based applications. Industrial Crops and Products, 2022, 182, 114944.	5.2	9
71	Overview of the markets for energy crops in EU27. Biofuels, Bioproducts and Biorefining, 2010, 4, 605-619.	3.7	8
72	Differential characteristics of photochemical acclimation to cold in two contrasting sweet sorghum hybrids. Physiologia Plantarum, 2016, 157, 479-489.	5.2	8

#	Article	IF	CITATIONS
73	Fourâ€year measurement of net ecosystem gas exchange of switchgrass in a Mediterranean climate after longâ€term arable land use. GCB Bioenergy, 2019, 11, 466-482.	5.6	7
74	Comparing soil respiration and carbon pools of a maize-wheat rotation and switchgrass for predicting land-use change-driven SOC variations. Agricultural Systems, 2019, 173, 209-217.	6.1	7
75	The association of crop production and precipitation; a comparison of two methodologies. Arid Land Research and Management, 2019, 33, 155-176.	1.6	7
76	Intercropping grasses and legumes can contribute to the development of advanced biofuels. Biomass and Bioenergy, 2021, 149, 106086.	5.7	7
77	Jerusalem artichoke (Helianthus tuberosus L.) productivity in different Italian growing areas: a modelling approach. Italian Journal of Agronomy, 2011, 6, 20.	1.0	6
78	Long-Term Productivity of Thirteen Lowland and Upland Switchgrass Ecotypes in the Mediterranean Region. Agronomy, 2020, 10, 923.	3.0	6
79	SunnGro: A new crop model for the simulation of sunn hemp (Crotalaria juncea L.) grown under alternative management practices. Biomass and Bioenergy, 2021, 146, 105975.	5.7	6
80	The effects of integrated food and bioenergy cropping systems on crop yields, soil health, and biomass quality: The EU and Brazilian experience. GCB Bioenergy, 2022, 14, 522-538.	5.6	6
81	Is switchgrass good for carbon savings? Longâ€ŧerm results in marginal land. GCB Bioenergy, 2022, 14, 814-823.	5.6	6
82	Giant Reed. , 2018, , 107-151.		5
83	Photosynthetic acclimation of sweet sorghum under progressive water stress. Industrial Crops and Products, 2015, 66, 216-219.	5.2	4
84	Nonâ€food crops in marginal land: an illusion or a reality?. Biofuels, Bioproducts and Biorefining, 2017, 11, 937-938.	3.7	4
85	Switchgrass. , 2018, , 61-105.		4
86	Optimization of agricultural practices for crambe in Europe. Industrial Crops and Products, 2021, 171, 113880.	5.2	4
87	Social considerations for the cultivation of industrial crops onÂmarginal agricultural land as feedstock forÂbioeconomy. Biofuels, Bioproducts and Biorefining, 2022, 16, 1319-1341.	3.7	4
88	A new compartmentalised rhizotron system for root phenotyping. Italian Journal of Agronomy, 2015, 10, 53.	1.0	3
89	Soil organic carbon dynamics in multipurpose cropping systems. Industrial Crops and Products, 2022, 187, 115315.	5.2	3
90	Toward biofuels: an ongoing journey in the EU. Biofuels, Bioproducts and Biorefining, 2010, 4, 583-585.	3.7	2

#	Article	IF	CITATIONS
91	An Atlantic bridge for comparing EU and US views on the prospects of second-generation biofuels. Biofuels, Bioproducts and Biorefining, 2013, 7, 627-628.	3.7	2
92	Good grapes make good wine. Biofuels, Bioproducts and Biorefining, 2012, 6, 363-364.	3.7	1
93	Areas with Natural Constraints to Agriculture: Possibilities and Limitations for The Cultivation of Switchgrass (Panicum Virgatum L.) and Giant Reed (Arundo Donax L.) in Europe. , 2018, , 39-63.		1
94	Improved agronomy and management of crop plants for industrial end uses. , 2007, , 83-127.		1