
Vicenç Branchadell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8846885/publications.pdf Version: 2024-02-01

VICENÃS REANCHADELL

#	Article	IF	CITATIONS
1	Strained and Reactive Donor/Acceptor‧upported Metallasilanone. Angewandte Chemie, 2021, 133, 18637-18641.	1.6	2
2	Strained and Reactive Donor/Acceptor‣upported Metallasilanone. Angewandte Chemie - International Edition, 2021, 60, 18489-18493.	7.2	5
3	Efficient DNA Condensation Induced by Chiral β-Amino Acid-Based Cationic Surfactants. ACS Applied Bio Materials, 2021, 4, 7034-7043.	2.3	8
4	Chiral pH-sensitive cyclobutane β-amino acid-based cationic amphiphiles: Possible candidates for use in gene therapy. Journal of Molecular Liquids, 2020, 297, 111856.	2.3	7
5	Kemp Elimination Reaction Catalyzed by Electric Fields. ChemPhysChem, 2020, 21, 295-306.	1.0	15
6	Catalytic Effect of Electric Fields on the Kemp Elimination Reactions with Neutral Bases. ChemPhysChem, 2020, 21, 2594-2604.	1.0	1
7	Synthesis of a Stable Nâ€Hetero <i>â€</i> Rh ^I â€Metallacyclic Silanone. Angewandte Chemie - International Edition, 2020, 59, 15937-15941.	7.2	19
8	Synthesis of a Stable Nâ€Hetero ―Rh I â€Metallacyclic Silanone. Angewandte Chemie, 2020, 132, 16071-16075.	. 1.6	12
9	Unraveling the Modulation of the Activity in Drugs Based on Methylated Phenanthroline When Intercalating between DNA Base Pairs. Journal of Chemical Information and Modeling, 2019, 59, 3989-3995.	2.5	12
10	A Stable Nâ€Hetero â€Rh â€Metallacyclic Silylene. Angewandte Chemie - International Edition, 2019, 58, 10310-10314.	7.2	20
11	A Stable Nâ€Hetero â€Rh â€Metallacyclic Silylene. Angewandte Chemie, 2019, 131, 10416-10420.	1.6	11
12	Synthesis and Gelling Abilities of Polyfunctional Cyclohexane-1,2-dicarboxylic Acid Bisamides: Influence of the Hydroxyl Groups. Molecules, 2019, 24, 352.	1.7	2
13	Reversible CO ₂ Addition to a Si=O Bond and Synthesis of a Persistent SiO ₂ –CO ₂ Cycloadduct Stabilized by a Lewis Donor–Acceptor Ligand. Angewandte Chemie, 2018, 130, 2665-2668.	1.6	14
14	Reversible CO ₂ Addition to a Si=O Bond and Synthesis of a Persistent SiO ₂ –CO ₂ Cycloadduct Stabilized by a Lewis Donor–Acceptor Ligand. Angewandte Chemie - International Edition, 2018, 57, 2635-2638.	7.2	20
15	Phosphine/Sulfoxideâ€&upported Carbon(0) Complex. Chemistry - A European Journal, 2018, 24, 2570-2574.	1.7	11
16	Stereoselectivity of Proline/Cyclobutane Amino Acid-Containing Peptide Organocatalysts for Asymmetric Aldol Additions: A Rationale. Journal of Organic Chemistry, 2018, 83, 350-363.	1.7	25
17	Cyclobutane Scaffold in Bolaamphiphiles: Effect of Diastereoisomerism and Regiochemistry on Their Surface Activity Aggregate Structure. Langmuir, 2018, 34, 11424-11432.	1.6	8
18	Phosphorylâ€Transfer Reaction in RNA under Alkaline Conditions. Chemistry - A European Journal, 2018, 24, 13565-13572.	1.7	0

#	Article	IF	CITATIONS
19	A Stable Monomeric SiO ₂ Complex with Donor–Acceptor Ligands. Angewandte Chemie - International Edition, 2017, 56, 3935-3939.	7.2	38
20	The Lightest Element Phosphoranylidene: NHC‣upported Cyclic Borylidene–Phosphorane with Significant B=P Character. Angewandte Chemie, 2017, 129, 4892-4896.	1.6	33
21	Donorâ€Stabilized Silylene/Phosphine‣upported Carbon(0) Center with High Electron Density. Angewandte Chemie, 2017, 129, 6995-6999.	1.6	12
22	Donor‧tabilized Silylene/Phosphine‧upported Carbon(0) Center with High Electron Density. Angewandte Chemie - International Edition, 2017, 56, 6891-6895.	7.2	27
23	The Lightest Element Phosphoranylidene: NHCâ€Supported Cyclic Borylidene–Phosphorane with Significant B=P Character. Angewandte Chemie - International Edition, 2017, 56, 4814-4818.	7.2	49
24	A Stable Monomeric SiO ₂ Complex with Donor–Acceptor Ligands. Angewandte Chemie, 2017, 129, 3993-3997.	1.6	23
25	Studies on Cycloalkaneâ€Based Bisamide Organogelators: A New Example of Stochastic Chiral Symmetryâ€Breaking Induced by Sonication. Chemistry - A European Journal, 2017, 23, 3357-3365.	1.7	10
26	Cyclic (Amino)(Phosphonium Bora‥lide)Silanone: A Remarkable Roomâ€Temperatureâ€Persistent Silanone. Angewandte Chemie, 2017, 129, 16132-16136.	1.6	57
27	Cyclic (Amino)(Phosphonium Bora‥lide)Silanone: A Remarkable Roomâ€Temperatureâ€Persistent Silanone. Angewandte Chemie - International Edition, 2017, 56, 15916-15920.	7.2	62
28	Phosphoryl Transfer Reaction in RNA: Is the Substrate-Assisted Catalysis a Possible Mechanism in Certain Solvents?. Journal of Physical Chemistry A, 2017, 121, 8525-8534.	1.1	5
29	Exceptionally Strong Electronâ€Donating Ability of Bora‥lide Substituent visâ€Ãâ€vis Silylene and Silylium Ion. Angewandte Chemie, 2017, 129, 10685-10690.	1.6	24
30	Exceptionally Strong Electronâ€Donating Ability of Boraâ€Ylide Substituent visâ€Ãâ€vis Silylene and Silylium Ion. Angewandte Chemie - International Edition, 2017, 56, 10549-10554.	7.2	42
31	A Fairly Stable Crystalline Silanone. Angewandte Chemie - International Edition, 2017, 56, 10481-10485.	7.2	79
32	A Fairly Stable Crystalline Silanone. Angewandte Chemie, 2017, 129, 10617-10621.	1.6	71
33	Synthesis, Structure, and Reactivity of a Stable Phosphonium–Sulfinyl Yldiide. European Journal of Inorganic Chemistry, 2017, 2017, 3494-3497.	1.0	12
34	Theoretical study of a proton wire mechanism for the peptide bond formation in the ribosome. Theoretical Chemistry Accounts, 2017, 136, 1.	0.5	3
35	Donor/Acceptorâ€Stabilized 1â€Silaketene: Reversible [2+2] Cycloaddition with Pyridine and Evolution by an Olefin Metathesis Reaction. Chemistry - A European Journal, 2016, 22, 10247-10253.	1.7	29
36	A theoretical study of methylation and CH/Ï€ interactions in DNA intercalation: methylated 1,10-phenanthroline in adenine–thymine base pairs. RSC Advances, 2016, 6, 85891-85902.	1.7	23

#	Article	IF	CITATIONS
37	Silacyclopropylideneplatinum(0) Complex as a Robust and Efficient Hydrosilylation Catalyst. Inorganic Chemistry, 2016, 55, 8234-8240.	1.9	61
38	Cyclic Amino(Ylide) Silylene: A Stable Heterocyclic Silylene with Strongly Electronâ€Donating Character. Angewandte Chemie, 2016, 128, 16375-16378.	1.6	37
39	Cyclic Amino(Ylide) Silylene: A Stable Heterocyclic Silylene with Strongly Electronâ€Donating Character. Angewandte Chemie - International Edition, 2016, 55, 16141-16144.	7.2	60
40	Synthesis, Selectivity and Structural Study of NewC3-Symmetric Tripodal Amides as Anion Receptors. An Experimental and Theoretical Approach. ChemistrySelect, 2016, 1, 1887-1892.	0.7	1
41	Theoretical Insights on the Mechanism of the GTP Hydrolysis Catalyzed by the Elongation Factor Tu (EF-Tu). Journal of Physical Chemistry B, 2016, 120, 89-101.	1.2	1
42	Donor-Stabilized Silacyclobutanone: A Precursor of 1-Silaketene via Retro-[2 + 2]-Cycloaddition Reaction at Room Temperature. Journal of the American Chemical Society, 2016, 138, 2965-2968.	6.6	36
43	Reversible Dimerization of Phosphine‣tabilized Silylenes by Silylene Insertion into Si ^{II} –H and Si ^{II} –Cl σâ€Bonds at Room Temperature. Angewandte Chemie - International Edition, 2015, 54, 15276-15279.	7.2	26
44	How the Intercalation of Phenanthroline Affects the Structure, Energetics, and Bond Properties of DNA Base Pairs: Theoretical Study Applied to Adenine–Thymine and Guanine–Cytosine Tetramers. Journal of Chemical Theory and Computation, 2015, 11, 2714-2728.	2.3	28
45	Stereoselective synthesis of highly branched chiral cyclobutane-cored triamines and their conjugation to Gd-DOTA. Tetrahedron, 2015, 71, 8085-8095.	1.0	0
46	Design of New N-polyether Pyrazole Derived Ligands: Synthesis, Characterization and Regioselectivity. Current Organic Synthesis, 2014, 11, 149-155.	0.7	3
47	Azavinylidenephosphoranes: A Class of Cyclic Push–Pull Carbenes. Chemistry - A European Journal, 2014, 20, 12528-12536.	1.7	11
48	Theoretical Study on Two-Step Mechanisms of Peptide Release in the Ribosome. Journal of Physical Chemistry B, 2014, 118, 5717-5729.	1.2	2
49	Foldamers of β-peptides: conformational preference of peptides formed by rigid building blocks. The first MI-IR spectra of a triamide nanosystem. Amino Acids, 2013, 45, 957-973.	1.2	9
50	Low-molecular-weight gelators consisting of hybrid cyclobutane-based peptides. Organic and Biomolecular Chemistry, 2013, 11, 2839.	1.5	32
51	Quantum Mechanical Study on the Mechanism of Peptide Release in the Ribosome. Journal of Physical Chemistry B, 2013, 117, 3503-3515.	1.2	4
52	A Baseâ€Stabilized Silaâ€Î²â€Lactone and a Donor/Acceptorâ€Stabilized Silanoic Acid. Angewandte Chemie - International Edition, 2013, 52, 8980-8983.	7.2	66
53	Searching for new cell-penetrating agents: hybrid cyclobutane–proline γ,γ-peptides. Organic and Biomolecular Chemistry, 2012, 10, 4050.	1.5	17
54	Quantum-Mechanical Study on the Mechanism of Peptide Bond Formation in the Ribosome. Journal of the American Chemical Society, 2012, 134, 5817-5831.	6.6	31

#	Article	IF	CITATIONS
55	Anion Influence on the Structure of <i>N,O</i> -Hybrid Pyrazole Zn ^{II} , Cd ^{II} , and Hg ^{II} Complexes. Synthesis, Characterization, and Theoretical Studies. Crystal Growth and Design, 2012, 12, 3700-3708.	1.4	9
56	Secondary Structure of Short β-Peptides as the Chiral Expression of Monomeric Building Units: A Rational and Predictive Model. Journal of Organic Chemistry, 2012, 77, 9795-9806.	1.7	30
57	Activation of CO ₂ and SO ₂ by Boryl(phosphino)carbenes. Angewandte Chemie - International Edition, 2012, 51, 2489-2491.	7.2	33
58	Synthesis and Characterization of a Stable Cyclic <i>gem</i> -Bis(phosphaylide): a 4ï€-Electron Three-Membered Heterocycle. Inorganic Chemistry, 2011, 50, 7949-7951.	1.9	19
59	Variable behaviour of flexible N,O-mixed pyrazole ligand towards Zn(ii), Cd(ii) and Hg(ii) ions. Synthesis, crystal structure and fluorescent properties. CrystEngComm, 2011, 13, 6457.	1.3	25
60	Selfâ€Assembly of Chiral <i>trans</i> â€Cyclobutaneâ€Containing βâ€Dipeptides into Ordered Aggregates. Chemistry - A European Journal, 2011, 17, 4588-4597.	1.7	47
61	Mutual Relationship between Stacking and Hydrogen Bonding in DNA. Theoretical Study of Guanineâ^'Cytosine, Guanineâ^'5-methylcytosine, and Their Dimers. Journal of Physical Chemistry B, 2010, 114, 10217-10227.	1.2	74
62	An Isolable Mixed P,Sâ€Bis(ylide) as an Asymmetric Carbon Atom Source. Angewandte Chemie - International Edition, 2010, 49, 6798-6801.	7.2	29
63	Synthesis and structural features of cyclobutane-containing chiral bicyclic ureas. Tetrahedron: Asymmetry, 2010, 21, 339-345.	1.8	2
64	Synthesis and Characterization of New N-Alkylamino-3,5-diphenylpyrazole Ligands and Reactivity Toward PdII and PtII. Study of the cis–trans Isomerization. Australian Journal of Chemistry, 2010, 63, 257.	0.5	10
65	Borylated Methylenephosphonium Salts: Precursors of Elusive Boryl(phosphino)carbenes. Journal of the American Chemical Society, 2010, 132, 8864-8865.	6.6	39
66	Folding and self-assembling with β-oligomers based on (1R,2S)-2-aminocyclobutane-1-carboxylic acid. Organic and Biomolecular Chemistry, 2010, 8, 564-575.	1.5	59
67	Synthesis of New Bicycloalkane Derivatives from Allylic Alcohols/Lactols by a Tandem Isomerization-Intramolecular Aldolization Process. Synlett, 2009, 2009, 1969-1973.	1.0	0
68	Density functional methods in the study of oxygen transfer reactions. Theoretical Chemistry Accounts, 2009, 123, 59-66.	0.5	3
69	A stereoselective synthetic entry to β-substituted α-[(trans)-vinyl] phosphonamides. Tetrahedron, 2009, 65, 2451-2454.	1.0	2
70	Synthesis and structural study of novel dimethylcyclobutyl \hat{l}^2 -peptides. Tetrahedron, 2009, 65, 5669-5675.	1.0	23
71	An Analysis of the Different Behavior of DNA and RNA through the Study of the Mutual Relationship between Stacking and Hydrogen Bonding. Journal of Physical Chemistry B, 2009, 113, 4907-4914.	1.2	47
72	Prevalence of Eight-Membered Hydrogen-Bonded Rings in Some Bis(cyclobutane) β-Dipeptides Including Residues with Trans Stereochemistry. Organic Letters, 2009, 11, 2301-2304.	2.4	47

#	Article	IF	CITATIONS
73	Understanding the π-facial diastereoselectivity in the addition of chiral diaminophosphino(silyl)carbenes to activated olefins. Tetrahedron: Asymmetry, 2008, 19, 2353-2358.	1.8	7
74	Quadrupole coupling constants and isomeric Mössbauer shifts for halogen-containing gold, platinum, niobium, tantalum and antimony compounds. Hyperfine Interactions, 2008, 181, 27-36.	0.2	4
75	Thioxophosphoranyl aryl- and heteroaryloxiranes as the representants of a new class of metallocarboxypeptidase inhibitors. Bioorganic and Medicinal Chemistry, 2008, 16, 4823-4828.	1.4	8
76	Synthesis and Characterization of Metallomacrocyclic Palladium(II) Complexes with New Hybrid Pyrazole Ligands. Diffusion NMR Studies and Theoretical Calculations. Inorganic Chemistry, 2008, 47, 11084-11094.	1.9	27
77	Highly Efficient Pyridylpyrazole Ligands for the Heck Reaction. A Combined Experimental and Computational Study. Organometallics, 2008, 27, 1084-1091.	1.1	57
78	Self-Assembly of a Cyclobutane β-Tetrapeptide To Form Nanosized Structures. Organic Letters, 2007, 9, 3643-3645.	2.4	81
79	On the Bonding of First-Row Transition Metal Cations to Guanine and Adenine Nucleobases. Journal of Physical Chemistry A, 2007, 111, 9823-9829.	1.1	34
80	Theoretical Study on the Mechanism of the [2 + 1] Thermal Cycloaddition between Alkenes and Stable Singlet (Phosphino)(silyl)carbenes. Journal of Organic Chemistry, 2007, 72, 357-366.	1.7	29
81	Cyclopropanation of Cyclohexenone by Diazomethane Catalyzed by Palladium Diacetate:Â Evidence for the Formation of Palladium(0) Nanoparticles. Organometallics, 2007, 26, 3306-3314.	1.1	38
82	Comparison of Density Functionals for Reactions of Sulfur Ylides with Aldehydes and Olefins. Journal of Physical Chemistry A, 2007, 111, 12019-12025.	1.1	9
83	CH/Ï€ Interactions in DNA and Proteins. A Theoretical Study. Journal of Physical Chemistry B, 2007, 111, 9372-9379.	1.2	55
84	Synthesis of a Mixed Phosphonium–Sulfonium Bisylide R ₃ PCSR ₂ . Angewand Chemie - International Edition, 2007, 46, 9078-9080.	te 7.2	42
85	Base-Catalyzed Anti-Markovnikov Hydroamination of Vinylarenes – Scope, Limitations and Computational Studies. European Journal of Organic Chemistry, 2007, 2007, 3311-3325.	1.2	84
86	Modeling of epoxy oligomers with nonlinear optical chromophores in the main chain: molecular dynamics and quantum chemical study. International Journal of Quantum Chemistry, 2007, 107, 2398-2408.	1.0	11
87	Highly stereoselective and easy synthesis of enantiopure phosphoranyl oxiranes. Tetrahedron: Asymmetry, 2007, 18, 2617-2620.	1.8	9
88	Prediction of pKa Values of nido-Carboranes by Density Functional Theory Methods. Inorganic Chemistry, 2006, 45, 7947-7954.	1.9	27
89	Reaction of C-Silylated α-Diazophosphines as Nucleophiles toward Carbonyl Compounds:  A Mechanistic Study and Application to the Synthesis of Alkynes and α-Hydroxyphosphonamides. Journal of Organic Chemistry, 2006, 71, 5320-5327.	1.7	9
90	Cyclobutyl-carbonyl substituted PNA: synthesis and study of a novel PNA derivative. Tetrahedron: Asymmetry, 2006, 17, 2499-2503.	1.8	6

#	Article	IF	CITATIONS
91	HFI and DFT study of the bonding in complexes of halogen and interhalogen diatomics with Lewis base. Computational and Theoretical Chemistry, 2006, 760, 175-182.	1.5	30
92	SO3 complexes with nitrogen containing ligands as the object of nuclear quadrupole interactions and density functional theory calculations. Computational and Theoretical Chemistry, 2006, 761, 195-201.	1.5	5
93	Regioselective formation of N-alkyl-3,5-pyrazole derived ligands. A synthetic and computational study. Tetrahedron, 2005, 61, 12377-12385.	1.0	20
94	DFT Study of HFI in Halogen-Containing Gold, Silver and Copper Complexes. Hyperfine Interactions, 2005, 159, 293-304.	0.2	2
95	Energy analysis of the chemical bond in group IV and V complexes: A density functional theory study. International Journal of Quantum Chemistry, 2005, 101, 869-877.	1.0	26
96	(+)- and (â~')-2-Aminocyclobutane-1-carboxylic Acids and Their Incorporation into Highly Rigid β-Peptides:Â Stereoselective Synthesis and a Structural Study. Journal of Organic Chemistry, 2005, 70, 7963-7971.	1.7	54
97	Theoretical and Experimental Investigation of the Basicity of Phosphino(silyl)carbenes. Journal of Organic Chemistry, 2005, 70, 5671-5677.	1.7	18
98	Adsorption of NH3and H2O in Acidic Chabazite. Comparison of ONIOM Approach with Periodic Calculations. Journal of Physical Chemistry B, 2005, 109, 3539-3545.	1.2	96
99	Stereoselective Synthesis of Phosphoranyl Aryloxiranes Through the Addition of a Nucleophilic Stable Carbene to Aromatic Aldehydes ChemInform, 2004, 35, no.	0.1	0
100	Can Cu+-Exchanged Zeolites Store Molecular Hydrogen? An ab initio Periodic Study Compared with Low-Temperature FTIR ChemInform, 2004, 35, no.	0.1	0
101	From Allylic Alcohols to Aldols by Using Iron Carbonyls as Catalysts: Computational Study on a Novel Tandem Isomerization-Aldolization Reaction. Chemistry - A European Journal, 2004, 10, 5795-5803.	1.7	32
102	Can Cu+-Exchanged Zeolites Store Molecular Hydrogen? An Ab-Initio Periodic Study Compared with Low-Temperature FTIR. Journal of Physical Chemistry B, 2004, 108, 8278-8286.	1.2	91
103	14-Helical Folding in a Cyclobutane-Containing β-Tetrapeptide. Journal of Organic Chemistry, 2004, 69, 5093-5099.	1.7	46
104	[2 + 2]-Photocycloaddition of 1,1-Diethoxyethylene to Chiral Polyfunctional 2-Cyclohexenones. Regioselectivity and π-Facial Discrimination. Journal of Organic Chemistry, 2004, 69, 1120-1125.	1.7	15
105	Stereoselective Rh-Catalyzed Hydrogenation of Cyclobutyl Chiral Enamides:Â Double Stereodifferentiation vs Catalyst-Controlled Diastereoselection. Journal of Organic Chemistry, 2004, 69, 7971-7978.	1.7	17
106	Electron hole formation in acidic zeolite catalysts. Journal of Chemical Physics, 2004, 121, 6034-6041.	1.2	49
107	Reactions of a Stable (Phosphanyl)(silyl)carbene with Aliphatic Aldehydes: [2+1] versus [2+2] Addition to a Carbonyl Group. European Journal of Organic Chemistry, 2003, 2003, 3147-3152.	1.2	24
108	Reactions of a Stable (Phosphanyl)(silyl)carbene with Aliphatic Aldehydes: [2 + 1] versus [2 + 2] Addition to a Carbonyl Group ChemInform, 2003, 34, no.	0.1	0

#	Article	IF	CITATIONS
109	Theoretical Study on the Mechanism of Iron Carbonyls Mediated Isomerization of Allylic Alcohols to Saturated Carbonyls. Chemistry - A European Journal, 2003, 9, 2062-2067.	1.7	45
110	Spin-forbidden N2O dissociation in Cu–ZSM-5. Chemical Physics Letters, 2003, 368, 242-246.	1.2	30
111	The silicon effect on the regioselectivity of the Tsuji-Trost reaction. Experimental and theoretical approaches. Journal of Organometallic Chemistry, 2003, 687, 337-345.	0.8	13
112	Stereoselective Synthesis of Phosphoranyl Aryloxiranes through the Addition of a Nucleophilic Stable Carbene to Aromatic Aldehydes. Journal of Organic Chemistry, 2003, 68, 7707-7710.	1.7	24
113	Intra- and Intermolecular 1,3-Dipolar Cycloaddition of Sugar Ketonitrones with Mono-, Di-, and Trisubstituted Dipolarophiles. Journal of Organic Chemistry, 2003, 68, 4772-4783.	1.7	37
114	Photolysis of Chiral 1-Pyrazolines to Cyclopropanes:Â Mechanism and Stereospecificity. Journal of Organic Chemistry, 2003, 68, 4906-4911.	1.7	19
115	Theoretical Study on the Regioselectivity of Nucleophilic Attack in Silyl-Substituted (Diphosphino)(η3-allyl)palladium Cations. Organometallics, 2002, 21, 2407-2412.	1.1	28
116	Stereoselective Synthesis of Novel Types of Cyclopropyl Carbocyclic Nucleosides Containing Quaternary Stereogenic Centers. Journal of Organic Chemistry, 2002, 67, 4520-4525.	1.7	20
117	Theoretical Study of the Photochemical [2 + 2]-Cycloadditions of Cyclic and Acyclic α,β-Unsaturated Carbonyl Compounds to Ethylene. Journal of Organic Chemistry, 2002, 67, 6070-6077.	1.7	40
118	Ketoâ^'Enol Isomerization of Acetaldehyde in HZSM5. A Theoretical Study Using the ONIOM2 Method. Journal of Physical Chemistry B, 2002, 106, 10220-10226.	1.2	46
119	On the NO Decomposition by Cuâ^'ZSM-5 through the ZCu(NO2)(NO) or ZCu(N2O3) Intermediates. Journal of Physical Chemistry B, 2002, 106, 1372-1379.	1.2	25
120	Reaction betweenN-Alkylhydroxylamines and Chiral Enoate Esters:Â More Experimental Evidence for a Cycloaddition-like Process, a Rationale Based on DFT Theoretical Calculations, and Stereoselective Synthesis of New Enantiopure β-Amino Acids. Journal of Organic Chemistry, 2002, 67, 2402-2410.	1.7	43
121	Stereodivergent syntheses of the first bis(cyclobutane) β-dipeptides. Tetrahedron: Asymmetry, 2002, 13, 2403-2405.	1.8	14
122	A comparative study on the 1,3-dipolar cycloadditions of diazomethane and bis(diisopropylamino)phosphinodiazomethane to chiral electron-deficient olefins: reactivity and diastereoselectivity. Tetrahedron: Asymmetry, 2002, 13, 2593-2603.	1.8	10
123	The T13(Ï€â~Ï€*)/S0Intersections and Triplet Lifetimes of Cyclic α,β-Enones. Journal of Organic Chemistry, 2001, 66, 8811-8814.	1.7	31
124	Mechanism of Olefin Cyclopropanation by Diazomethane Catalyzed by Palladium Dicarboxylates. A Density Functional Study. Journal of the American Chemical Society, 2001, 123, 6157-6163.	6.6	53
125	Stereoselective synthesis of chiral polyfunctionalized cyclohexane derivatives. Palladium(II)-mediated reaction between cyclohexenones and diazomethane. Tetrahedron, 2001, 57, 1025-1034.	1.0	18
126	Density Functional Study of Possible Intermediates in the Mechanism of Olefin Cyclopropanation Catalyzed by Metal Carboxylates. European Journal of Inorganic Chemistry, 2000, 2000, 1073-1078.	1.0	13

#	Article	IF	CITATIONS
127	Enantioselective synthetic approaches to cyclopropane and cyclobutane β-amino acids: synthesis and structural study of a conformationally constrained β-dipeptide. Tetrahedron: Asymmetry, 2000, 11, 3569-3584.	1.8	63
128	Stereoselective synthesis of cyclobutyl α-aminocyclopropyl carboxylic acid derivatives. Tetrahedron: Asymmetry, 2000, 11, 4903-4914.	1.8	15
129	Divergent Routes to Chiral Cyclobutane Synthons from (â^')-α-Pinene and Their Use in the Stereoselective Synthesis of Dehydro Amino Acids. Journal of Organic Chemistry, 2000, 65, 3934-3940.	1.7	62
130	1,3-Dipolar Cycloadditions of Diazomethane to Chiral Electron-Deficient Olefins:Â The Origin of the Ï€-Facial Diastereoselection. Journal of Organic Chemistry, 2000, 65, 388-396.	1.7	35
131	Theoretical Study of the Structure of ZCu(NO2)(NO). A Proposed Intermediate in the NOx Decomposition by Cuâ^'ZSM-5. Journal of Physical Chemistry A, 2000, 104, 3225-3230.	1.1	25
132	On theZâ^'EPhotoisomerization of Chiral 2-Pentenoate Esters:Â Stationary Irradiations, Laser-Flash Photolysis Studies, and Theoretical Calculations. Journal of Organic Chemistry, 2000, 65, 6958-6965.	1.7	12
133	Bond Shift Isomerization in Cyclic and Acyclic (triene)Fe(CO)3Complexes. A Density Functional Study. Organometallics, 2000, 19, 4477-4482.	1.1	7
134	Structure and Conformational Equilibrium in Substituted [(η4-butadiene)Fe(CO)3] Complexes: A Density Functional Study. Chemistry - A European Journal, 1999, 5, 1722-1727.	1.7	17
135	Density functional study of the Fe–CO bond dissociation energies of Fe(CO)5. Journal of Chemical Physics, 1999, 110, 778-783.	1.2	61
136	Density Functional Study on the Regioselectivity of Nucleophilic Attack in 1,3-Disubstituted (Diphosphino)(η3-allyl)palladium Cations. Organometallics, 1999, 18, 4934-4941.	1.1	48
137	Controlling π-Facial Diastereoselectivity in the 1,3-Dipolar Cycloadditions of Diazomethane to Chiral Pentenoates and Furanones:Â Enantioselective Stereodivergent Syntheses of Cyclopropane Hydroxy Acids and Didehydro Amino Acids. Journal of Organic Chemistry, 1998, 63, 3581-3589.	1.7	28
138	Theoretical Study of the Mechanism of the Addition of Diazomethane to Ethylene and Formaldehyde. Comparison of Conventional ab Initio and Density Functional Methods. Journal of Physical Chemistry A, 1998, 102, 10106-10112.	1.1	27
139	Coordination of NO2to Alkaline-Earth Metals. A Theoretical Study. Journal of Physical Chemistry A, 1998, 102, 630-635.	1.1	10
140	Coordination of NO2to Cu and Mg in M(NO2)2Complexes. A Theoretical Study. Inorganic Chemistry, 1998, 37, 4512-4517.	1.9	11
141	Nature and Strength of Metalâ^'Chalcogen Multiple Bonds in High Oxidation State Complexes. Inorganic Chemistry, 1998, 37, 1744-1748.	1.9	23
142	Coordination of Cu+lons to Zeolite Frameworks Strongly Enhances Their Ability To Bind NO2. An ab Initio Density Functional Study. Journal of the American Chemical Society, 1998, 120, 1545-1551.	6.6	109
143	Effect of Lewis Acid Catalysis on the Dielsâ ʿAlder Reaction between Methyl (Z)-(S)-4,5-(2,2-Propylidenedioxy)pent-2-enoate and Cyclopentadiene. A Theoretical Study. Journal of Organic Chemistry, 1997, 62, 3049-3054.	1.7	47
144	A Theoretical Study of the Endo/Exo Selectivity of the Dielsâ~'Alder Reaction between Cyclopropene and Butadiene. Journal of the American Chemical Society, 1997, 119, 4232-4238.	6.6	55

#	Article	IF	CITATIONS
145	Theoretical Study of M+â^'CO2and OM+CO Systems for First Transition Row Metal Atoms. Journal of Physical Chemistry A, 1997, 101, 7854-7859.	1.1	112
146	Structure and Fluxional Behavior of (η4-butadiene)Fe(CO)2L (L = CO, PH3, PMe3) Complexes. A Density Functional Study. Organometallics, 1997, 16, 475-481.	1.1	17
147	Metalâ^'Phosphorus Bonding in Fe(CO)4PR3Complexes. A Density Functional Study. Organometallics, 1997, 16, 5556-5562.	1.1	54
148	A Biradical Mechanism in the Dielsâ `Alder Reactions of 5-Methylene-2(5H)-furanones:Â Experimental Evidence and Theoretical Rationalization. Journal of the American Chemical Society, 1997, 119, 9992-10003.	6.6	41
149	Density functional study of Diels-Alder reactions between cyclopentadiene and substituted derivatives of ethylene. International Journal of Quantum Chemistry, 1997, 61, 381-388.	1.0	39
150	Theoretical study of ScCO2+. International Journal of Quantum Chemistry, 1997, 63, 523-528.	1.0	3
151	Atomic reference energies for density functional calculations. Chemical Physics Letters, 1997, 265, 481-489.	1.2	154
152	Ab Initio Study ofEndo/Exoand Diastereofacial Selectivities in Dielsâ^'Alder Reactions between Chiral Butenolides and Cyclopentadiene. Journal of Organic Chemistry, 1996, 61, 621-626.	1.7	26
153	Theoretical study of the ScCO2 → OScCO reaction. Computational and Theoretical Chemistry, 1996, 371, 79-84.	1.5	15
154	Comparison of density functional and coupled cluster methods in the study of metal–ligand systems: Sc–CO2 and Cu–NO2. Journal of Chemical Physics, 1996, 105, 9966-9971.	1.2	46
155	Enantioselective synthesis of chiral polyfunctional cyclopentane derivatives: Epoxy esters, hydroxy esters, and hydroxy amino esters. Tetrahedron, 1995, 51, 11841-11854.	1.0	12
156	Theoretical study of the bonding of NO2 to Cu and Ag. Journal of Chemical Physics, 1995, 103, 9738-9743.	1.2	21
157	Formation of 1:1, 2:1, and 2:2 Complexes between Carbonyl Compounds and Titanium Tetrachloride. An ab Initio Study. Inorganic Chemistry, 1995, 34, 3433-3439.	1.9	5
158	On the Bonding in Sc-CO2. The Journal of Physical Chemistry, 1995, 99, 8567-8571.	2.9	41
159	Density Functional Study of Complexes between Lewis Acids and Bases. The Journal of Physical Chemistry, 1995, 99, 6472-6476.	2.9	47
160	Potential Energy Surfaces of the Gas-Phase SN2 Reactions X- + CH3X = XCH3 + X- (X = F, Cl, Br, I): A Comparative Study by Density Functional Theory and ab Initio Methods. Journal of the American Chemical Society, 1994, 116, 10645-10656.	6.6	159
161	Rotational Barriers in Trimethylenemethane-Fe(CO)2L Complexes. A Density Functional Study. Organometallics, 1994, 13, 3115-3119.	1.1	9
162	Complexes between formaldehyde and titanium tetrachloride. An ab initio study. Journal of the American Chemical Society, 1992, 114, 4357-4364.	6.6	22

#	Article	IF	CITATIONS
163	Unsaturated acid derivatives in diels-alder cycloadditions: effect of the extended or cross conjugation Tetrahedron, 1992, 48, 9001-9012.	1.0	8
164	Diastereofacial selectivity in uncatalyzed Diels-Alder cycloadditions involving α,β-unsaturated esters and lactones with stereogenic centers containing oxygen functiionalities. Tetrahedron, 1992, 48, 2659-2680.	1.0	48
165	Complexes between formaldehyde and boron trihalides. An ab initio study. Journal of the American Chemical Society, 1991, 113, 4132-4136.	6.6	37
166	Diels-Alder cycloadditions of electron-rich, electron-deficient, and push-pull dienes with cyclic dienophiles: high-pressure-induced reactions and theoretical calculations. Journal of Organic Chemistry, 1991, 56, 4135-4141.	1.7	37
167	Mechanism and site selectivity in the Diels-Alder reaction between protoanemonin and butadiene. A theoretical study. Journal of Organic Chemistry, 1991, 56, 2190-2193.	1.7	25
168	The Lewis acidity scale of boron trihalides. Computational and Theoretical Chemistry, 1991, 236, 75-84.	1.5	26
169	5-Ylidene-2(5)-furanones as dienophiles in Diels-Alder cycloadditions: effect of the substituents on the site-selectivity. Tetrahedron, 1991, 47, 8775-8786.	1.0	9
170	5-Methylene-2(5H)-furanone as a dienophile in Diels-Alder cycloadditions: site-selectivity and regioselectivity. Journal of Organic Chemistry, 1990, 55, 3060-3063.	1.7	30
171	Theoretical study of the acid-catalysed Friedel–Crafts reaction between CH3F and CH4. Journal of the Chemical Society Perkin Transactions II, 1989, , 1091-1096.	0.9	2
172	A theoretical insight into the catalytic action in Friedel-Crafts reaction. Journal of Molecular Catalysis, 1988, 44, 285-294.	1.2	4
173	Carbon dioxide rotational isomerism in bis(ethylene)(carbon dioxide)molybdenum complexes: a theoretical study. Inorganic Chemistry, 1987, 26, 3966-3968.	1.9	15
174	The role of proton transfer in acid-catalyzed diels-alder reactions: A theoretical study. Journal of Molecular Catalysis, 1986, 35, 39-46.	1.2	0
175	On the mechanism of Diels—Alder reactions catalyzed by Lewis acids. Chemical Physics Letters, 1985, 113, 197-201.	1.2	12
176	Reactivity and selectivity in catalyzed diels-alder reactions. Computational and Theoretical Chemistry, 1985, 120, 85-90.	1.5	9
177	Acid catalysis in cycloaddition reactions. Computational and Theoretical Chemistry, 1984, 107, 191-196.	1.5	2
178	Catalytic effect on the selectivity of the Diels—Alder reaction. Chemical Physics Letters, 1983, 97, 378-380.	1.2	6
179	Solvent effect in the Diels-Alder reaction. Computational and Theoretical Chemistry, 1983, 93, 255-260.	1.5	3