
Masahiro Natsume

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8846806/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of Secondary Metabolites of Tomato (<i>Solanum lycopersicum</i>) on Chemotaxis of <i>Ralstonia solanacearum</i> , Pathogen of Bacterial Wilt Disease. Journal of Agricultural and Food Chemistry, 2019, 67, 1807-1813.	5.2	16
2	Phytotoxin produced by the netted scab pathogen, Streptomyces turgidiscabies strain 65, isolated in Sweden. Journal of General Plant Pathology, 2018, 84, 108-117.	1.0	11
3	Bioassay-guided isolation of a novel chemoattractant for Ralstonia solanacearum in tomato root exudates. Journal of General Plant Pathology, 2018, 84, 20-26.	1.0	5
4	Ethyl β- <scp>d</scp> -glucoside: a novel chemoattractant of <i>Ralstonia solanacearum</i> isolated from tomato root exudates by a bioassay-guided fractionation. Bioscience, Biotechnology and Biochemistry, 2018, 82, 2049-2052.	1.3	6
5	Effects of concanamycins produced by Streptomyces scabies on lesion type of common scab of potato. Journal of General Plant Pathology, 2017, 83, 78-82.	1.0	19
6	Biochemical synthesis of uniformly 13C-labeled diterpene hydrocarbons and their bioconversion to diterpenoid phytoalexins in planta. Bioscience, Biotechnology and Biochemistry, 2017, 81, 1176-1184.	1.3	5
7	HpDTC1, a Stress-Inducible Bifunctional Diterpene Cyclase Involved in Momilactone Biosynthesis, Functions in Chemical Defence in the Moss Hypnum plumaeforme. Scientific Reports, 2016, 6, 25316.	3.3	31
8	Studies on bioactive natural products involved in the growth and morphological differentiation of microorganisms. Journal of Pesticide Sciences, 2016, 41, 96-101.	1.4	2
9	Study on bioactive natural products involved in the growth and morphological differentiation of microorganisms. Japanese Journal of Pesticide Science, 2016, 41, 169-174.	0.0	0
10	Analysis of ent-kaurenoic acid by ultra-performance liquid chromatography-tandem mass spectrometry. Biochemistry and Biophysics Reports, 2015, 2, 103-107.	1.3	6
11	Formation and Dissociation of the BSS1 Protein Complex Regulates Plant Development via Brassinosteroid Signaling. Plant Cell, 2015, 27, 375-390.	6.6	40
12	Distinct Characteristics of Indole-3-Acetic Acid and Phenylacetic Acid, Two Common Auxins in Plants. Plant and Cell Physiology, 2015, 56, 1641-1654.	3.1	142
13	Recent development of pesticides (1). Japanese Journal of Pesticide Science, 2014, 39, 68-68.	0.0	0
14	Recent development of pesticides (2). Japanese Journal of Pesticide Science, 2014, 39, 152-152.	0.0	0
15	å,åæ°ã®ç"Ÿç"£ç¾å´ã•ã,‰ï¼^1). Japanese Journal of Pesticide Science, 2014, 39, 167-167.	0.0	0
16	Effect of Pamamycin-607 on Secondary Metabolite Production by <i>Streptomyces</i> spp Bioscience, Biotechnology and Biochemistry, 2011, 75, 1722-1726.	1.3	12
17	Antibacterial activity of alkyl gallates and related compounds against Ralstonia solanacearum. Journal of Pesticide Sciences, 2011, 36, 240-242.	1.4	13
18	ldentification and activity of a phytotoxin produced by <i>Calonectria ilicicola</i> , the causal agent of soybean red crown rot. Canadian Journal of Plant Pathology, 2011, 33, 347-354.	1.4	13

MASAHIRO NATSUME

#	Article	IF	CITATIONS
19	Allelochemicals for Plant–Plant and Plant–Microbe Interactions. , 2010, , 539-561.		19
20	Identification and activity of ethyl gallate as an antimicrobial compound produced by <i>Geranium carolinianum</i> . Weed Biology and Management, 2009, 9, 169-172.	1.4	19
21	Structure-activity Relationship of Pamamycins: Effect of Side Chain Length on Aerial Mycelium-inducing Activity. Journal of Antibiotics, 2008, 61, 98-102.	2.0	6
22	Structural Determination of Hypnosin, a Spore Germination Inhibitor of Phytopathogenic Streptomyces sp. Causing Root Tumor in Melon (Cucumis sp.). Journal of Agricultural and Food Chemistry, 2007, 55, 10622-10627.	5.2	4
23	Isolation and structural properties of aerial mycelium differentiation-inhibitory substances against Streptomyces scabiei causing potato common scab. Journal of Pesticide Sciences, 2007, 32, 131-134.	1.4	1
24	Control of potato scab by Geranium carolinianum L. Weed Biology and Management, 2007, 7, 124-127.	1.4	5
25	Nitrogen Incorporation in the Biosynthetic Pathway of the Nitrogen-containing Polyketide, Pamamycin in Streptomyces alboniger. Journal of Antibiotics, 2005, 58, 722-730.	2.0	7
26	Phytotoxin produced by Streptomyces sp. causing potato russet scab in Japan. Journal of General Plant Pathology, 2005, 71, 364-369.	1.0	28
27	Biosynthetic Origin of the Carbon Skeleton and Nitrogen Atom of Pamamycin-607, a Nitrogen-Containing Polyketide. Bioscience, Biotechnology and Biochemistry, 2005, 69, 315-320.	1.3	14
28	Identification and use of a wild plant with antimicrobial activity against Ralstonia solanacearum, the cause of bacterial wilt of potato. Weed Biology and Management, 2004, 4, 187-194.	1.4	17
29	Phytotoxin Produced by Streptomyces cheloniumii Causing Potato Russet Scab. ACS Symposium Series, 2004, , 239-245.	0.5	0
30	Relationship between Response to and Production of the Aerial Mycelium-inducing Substances Pamamycin-607 and A-factor. Bioscience, Biotechnology and Biochemistry, 2003, 67, 803-808.	1.3	20
31	Effect of Antibiotics on Formation of Aerial Mycelium and Production of Phytotoxins in Streptomyces spp Journal of Pesticide Sciences, 2003, 28, 183-187.	1.4	1
32	Phytotoxin Production and Aerial Mycelium Formation by Streptomyces scabies and S. acidiscabies in Vitro. Journal of General Plant Pathology, 2001, 67, 299-302.	1.0	9
33	Effects of <i>N</i> -Demethylation of Pamamycins on Aerial Mycelium-Inducing and Growth Inhibition Activities. Journal of Pesticide Sciences, 2001, 26, 149-153.	1.4	8
34	Conjugated and Unconjugated Brassinosteroids. ACS Symposium Series, 2000, , 91-101.	0.5	3
35	Reversible Conversion between Teasterone and Its Ester Conjugates in Lily Cell Cultures. Journal of Pesticide Sciences, 2000, 25, 117-122.	1.4	18
36	De-N-methylpamamycin-593A and B, New Pamamycin Derivatives Isolated from Streptomyces alboniger Journal of Antibiotics, 1999, 52, 329-331.	2.0	17

MASAHIRO NATSUME

#	Article	IF	CITATIONS
37	Differentiation of Aerial Mycelia. Pamamycins and Calcium Ion in Streptomyces alboniger Nihon Hosenkin Gakkai Shi = Actinomycetologica, 1999, 13, 11-19.	0.3	13
38	Differential Production of the Phytotoxins Thaxtomin A and Concanamycins A and B by Potato Common Scab-causing Streptomyces spp Nihon Shokubutsu Byori Gakkaiho = Annals of the Phytopathological Society of Japan, 1998, 64, 202-204.	0.1	28
39	Production of Phytotoxins, Concanamycins A and B by Streptomyces spp. Causing Potato Scab Nihon Shokubutsu Byori Gakkaiho = Annals of the Phytopathological Society of Japan, 1996, 62, 411-413.	0.1	32
40	Synergistic Effect of Sterol Glucoside on Brassinolide Activity in Lamina Inclination and Epicotyl Elongation. Journal of Pesticide Sciences, 1996, 21, 209-211.	1.4	2
41	Structure-activity Relationship of Pamamycins: Effects of Alkyl Substituents Journal of Antibiotics, 1995, 48, 1159-1164.	2.0	29
42	Roles of the Dimethylamino Group and Macrodiolide Ring of Pamamycin-607 in Its Aerial Mycelium-inducing Activity. Bioscience, Biotechnology and Biochemistry, 1995, 59, 1766-1768.	1.3	14
43	The structures of four new pamamycin homologues isolated from streptomyces alboniger. Tetrahedron Letters, 1991, 32, 3087-3090.	1.4	47
44	Isolation, physico-chemical properties and biological activity of pamamycin-607, an aerial mycelium-inducing substance from Streptomyces alboniger Journal of Antibiotics, 1988, 41, 1196-1204.	2.0	83