## Lloyd S Peck

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8846644/publications.pdf Version: 2024-02-01



LLOVD S DECK

| #  | Article                                                                                                                                                                                              | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Climate change and the marine ecosystem of the western Antarctic Peninsula. Philosophical<br>Transactions of the Royal Society B: Biological Sciences, 2007, 362, 149-166.                           | 4.0  | 343       |
| 2  | Extreme sensitivity of biological function to temperature in Antarctic marine species. Functional Ecology, 2004, 18, 625-630.                                                                        | 3.6  | 332       |
| 3  | Animal temperature limits and ecological relevance: effects of size, activity and rates of change.<br>Functional Ecology, 2009, 23, 248-256.                                                         | 3.6  | 311       |
| 4  | Thermal limits and adaptation in marine Antarctic ectotherms: an integrative view. Philosophical Transactions of the Royal Society B: Biological Sciences, 2007, 362, 2233-2258.                     | 4.0  | 304       |
| 5  | Macrophysiology: A Conceptual Reunification. American Naturalist, 2009, 174, 595-612.                                                                                                                | 2.1  | 298       |
| 6  | The spatial structure of Antarctic biodiversity. Ecological Monographs, 2014, 84, 203-244.                                                                                                           | 5.4  | 286       |
| 7  | Environmental constraints on life histories in Antarctic ecosystems: tempos, timings and predictability. Biological Reviews, 2006, 81, 75.                                                           | 10.4 | 278       |
| 8  | Polar gigantism dictated by oxygen availability. Nature, 1999, 399, 114-115.                                                                                                                         | 27.8 | 272       |
| 9  | Climate Change and Invasibility of the Antarctic Benthos. Annual Review of Ecology, Evolution, and Systematics, 2007, 38, 129-154.                                                                   | 8.3  | 248       |
| 10 | Antarctic environmental change and biological responses. Science Advances, 2019, 5, eaaz0888.                                                                                                        | 10.3 | 215       |
| 11 | Ecophysiology of Antarctic marine ectotherms: limits to life. Polar Biology, 2002, 25, 31-40.                                                                                                        | 1.2  | 193       |
| 12 | Polar research: Six priorities for Antarctic science. Nature, 2014, 512, 23-25.                                                                                                                      | 27.8 | 189       |
| 13 | Acclimation and thermal tolerance in Antarctic marine ectotherms. Journal of Experimental Biology, 2014, 217, 16-22.                                                                                 | 1.7  | 187       |
| 14 | Upper Temperature Limits of Tropical Marine Ectotherms: Global Warming Implications. PLoS ONE, 2011,<br>6, e29340.                                                                                   | 2.5  | 176       |
| 15 | Insights into shell deposition in the Antarctic bivalve Laternula elliptica: gene discovery in the mantle transcriptome using 454 pyrosequencing. BMC Genomics, 2010, 11, 362.                       | 2.8  | 160       |
| 16 | Adult acclimation to combined temperature and p <scp>H</scp> stressors significantly enhances reproductive outcomes compared to shortâ€ŧerm exposures. Journal of Animal Ecology, 2015, 84, 773-784. | 2.8  | 159       |
| 17 | Metabolic Demand, Oxygen Supply, and Critical Temperatures in the Antarctic BivalveLaternula elliptica. Physiological and Biochemical Zoology, 2002, 75, 123-133.                                    | 1.5  | 144       |
| 18 | HSP70 heat shock proteins and environmental stress in Antarctic marine organisms: A mini-review.<br>Marine Genomics, 2009, 2, 11-18.                                                                 | 1.1  | 144       |

| #  | Article                                                                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Marine invertebrate skeleton size varies with latitude, temperature and carbonate saturation:<br>implications for global change and ocean acidification. Global Change Biology, 2012, 18, 3026-3038.                 | 9.5 | 131       |
| 20 | Early Larval Development of the Sydney Rock Oyster <i>Saccostrea glomerata</i> Under Near-Future<br>Predictions of CO <sub>2</sub> -Driven Ocean Acidification. Journal of Shellfish Research, 2009, 28,<br>431-437. | 0.9 | 129       |
| 21 | Poor acclimation capacities in Antarctic marine ectotherms. Marine Biology, 2010, 157, 2051-2059.                                                                                                                    | 1.5 | 122       |
| 22 | Links between the structure of an Antarctic shallow-water community and ice-scour frequency.<br>Oecologia, 2004, 141, 121-129.                                                                                       | 2.0 | 118       |
| 23 | A Cold Limit to Adaptation in the Sea. Trends in Ecology and Evolution, 2016, 31, 13-26.                                                                                                                             | 8.7 | 116       |
| 24 | Temperature and basal metabolism in two Antarctic marine herbivores. Journal of Experimental Marine<br>Biology and Ecology, 1989, 127, 1-12.                                                                         | 1.5 | 113       |
| 25 | Antarctic marine molluscs do have an HSP70 heat shock response. Cell Stress and Chaperones, 2008, 13, 39-49.                                                                                                         | 2.9 | 112       |
| 26 | Organisms and responses to environmental change. Marine Genomics, 2011, 4, 237-243.                                                                                                                                  | 1.1 | 112       |
| 27 | Hyperoxia alleviates thermal stress in the Antarctic bivalve, Laternula elliptica: evidence for oxygen<br>limited thermal tolerance. Polar Biology, 2006, 29, 688-693.                                               | 1.2 | 106       |
| 28 | Growth and metabolism in the Antarctic brachiopod Liothyrella uva. Philosophical Transactions of the Royal Society B: Biological Sciences, 1997, 352, 851-858.                                                       | 4.0 | 103       |
| 29 | Variability and change in the west Antarctic Peninsula marine system: Research priorities and opportunities. Progress in Oceanography, 2019, 173, 208-237.                                                           | 3.2 | 102       |
| 30 | Amphipod crustacean size spectra: new insights in the relationship between size and oxygen. Oikos, 2004, 106, 167-175.                                                                                               | 2.7 | 101       |
| 31 | Antarctic Marine Biodiversity: Adaptations, Environments and Responses to Change. , 2018, , 105-236.                                                                                                                 |     | 99        |
| 32 | Predatory behaviour and metabolic costs in the Antarctic muricid gastropod Trophon longstaffi.<br>Polar Biology, 2003, 26, 208-217.                                                                                  | 1.2 | 93        |
| 33 | Warming by 1°C Drives Species and Assemblage Level Responses in Antarctica's Marine Shallows.<br>Current Biology, 2017, 27, 2698-2705.e3.                                                                            | 3.9 | 91        |
| 34 | The HSP70 heat shock response in the Antarctic fish Harpagifer antarcticus. Polar Biology, 2007, 31, 171-180.                                                                                                        | 1.2 | 87        |
| 35 | Antarctica: The final frontier for marine biological invasions. Global Change Biology, 2019, 25, 2221-2241.                                                                                                          | 9.5 | 87        |
| 36 | Hypoxia impacts large adults first: consequences in a warming world. Global Change Biology, 2013, 19, 2251-2263.                                                                                                     | 9.5 | 86        |

| #  | Article                                                                                                                                                                                                      | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Triggers of the HSP70 stress response: environmental responses and laboratory manipulation in an<br>Antarctic marine invertebrate (Nacella concinna). Cell Stress and Chaperones, 2009, 14, 649-660.         | 2.9  | 85        |
| 38 | Lack of acclimation in Ophionotus victoriae: brittle stars are not fish. Polar Biology, 2009, 32, 399-402.                                                                                                   | 1.2  | 84        |
| 39 | Lack of an HSP70 heat shock response in two Antarctic marine invertebrates. Polar Biology, 2008, 31, 1059-1065.                                                                                              | 1.2  | 83        |
| 40 | Biodiversity in marine invertebrate responses to acute warming revealed by a comparative multiâ€omics<br>approach. Global Change Biology, 2017, 23, 318-330.                                                 | 9.5  | 80        |
| 41 | Mitochondrial function and critical temperature in the Antarctic bivalve, Laternula elliptica.<br>Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 1999, 124,<br>179-189. | 1.8  | 79        |
| 42 | Life in the intertidal: Cellular responses, methylation and epigenetics. Functional Ecology, 2018, 32,<br>1982-1994.                                                                                         | 3.6  | 79        |
| 43 | The myth of metabolic cold adaptation: oxygen consumption in stenothermal Antarctic bivalves.<br>Geological Society Special Publication, 2000, 177, 441-450.                                                 | 1.3  | 78        |
| 44 | Remote sensing reveals Antarctic green snow algae as important terrestrial carbon sink. Nature<br>Communications, 2020, 11, 2527.                                                                            | 12.8 | 75        |
| 45 | Limitation of size by hypoxia in the fruit flyDrosophila melanogaster. Journal of Experimental Zoology<br>Part A, Comparative Experimental Biology, 2005, 303A, 968-975.                                     | 1.3  | 72        |
| 46 | Prospects for surviving climate change in Antarctic aquatic species. , 2005, 2, 9.                                                                                                                           |      | 67        |
| 47 | Deciphering mollusc shell production: the roles of genetic mechanisms through to ecology, aquaculture and biomimetics. Biological Reviews, 2020, 95, 1812-1837.                                              | 10.4 | 63        |
| 48 | Geographical variation in thermal tolerance within Southern Ocean marine ectotherms. Comparative<br>Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2009, 153, 154-161.              | 1.8  | 60        |
| 49 | Ocean acidification does not impact shell growth or repair of the Antarctic brachiopod Liothyrella<br>uva (Broderip, 1833). Journal of Experimental Marine Biology and Ecology, 2015, 462, 29-35.            | 1.5  | 60        |
| 50 | Blue mussel shell shape plasticity and natural environments: a quantitative approach. Scientific<br>Reports, 2018, 8, 2865.                                                                                  | 3.3  | 60        |
| 51 | Snow algae communities in Antarctica: metabolic and taxonomic composition. New Phytologist, 2019, 222, 1242-1255.                                                                                            | 7.3  | 60        |
| 52 | Juveniles Are More Resistant to Warming than Adults in 4 Species of Antarctic Marine Invertebrates.<br>PLoS ONE, 2013, 8, e66033.                                                                            | 2.5  | 59        |
| 53 | Two methods for the assessment of the oxygen content of small volumes of seawater. Journal of Experimental Marine Biology and Ecology, 1990, 141, 53-62.                                                     | 1.5  | 57        |
| 54 | The effects of temperature on walking and righting in temperate and Antarctic crustaceans. Polar Biology, 2006, 29, 978-987.                                                                                 | 1.2  | 57        |

| #  | Article                                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Physiological plasticity, long term resistance or acclimation to temperature, in the Antarctic bivalve,<br>Laternula elliptica. Comparative Biochemistry and Physiology Part A, Molecular & Integrative<br>Physiology, 2012, 162, 16-21. | 1.8  | 57        |
| 56 | Summer metabolism and seasonal changes in biochemical composition of the Antarctic brachiopod<br>Liothyrella uva (Broderip, 1833). Journal of Experimental Marine Biology and Ecology, 1987, 114, 85-97.                                 | 1.5  | 56        |
| 57 | Very slow development in two Antarctic bivalve molluscs, the infaunal clam Laternula elliptica and the scallop Adamussium colbecki. Marine Biology, 2007, 150, 1191-1197.                                                                | 1.5  | 55        |
| 58 | Iceberg Scour and Shell Damage in the Antarctic Bivalve Laternula elliptica. PLoS ONE, 2012, 7, e46341.                                                                                                                                  | 2.5  | 53        |
| 59 | Lack of coherence in the warming responses of marine crustaceans. Functional Ecology, 2014, 28, 895-903.                                                                                                                                 | 3.6  | 53        |
| 60 | Antarctic ecosystems in transition – life between stresses and opportunities. Biological Reviews, 2021, 96, 798-821.                                                                                                                     | 10.4 | 53        |
| 61 | Biomineralization plasticity and environmental heterogeneity predict geographical resilience patterns of foundation species to future change. Global Change Biology, 2019, 25, 4179-4193.                                                | 9.5  | 52        |
| 62 | Long-term effects of altered pH and temperature on the feeding energetics of the Antarctic sea urchin, <i>Sterechinus neumayeri</i> . Biodiversity, 2016, 17, 34-45.                                                                     | 1.1  | 51        |
| 63 | Revealing higher than expected meiofaunal diversity in Antarctic sediments: a metabarcoding approach. Scientific Reports, 2017, 7, 6094.                                                                                                 | 3.3  | 51        |
| 64 | Transcriptional response to heat stress in the Antarctic bivalve Laternula elliptica. Journal of<br>Experimental Marine Biology and Ecology, 2010, 391, 65-72.                                                                           | 1.5  | 50        |
| 65 | Bomb signals in old Antarctic brachiopods. Nature, 1996, 380, 207-208.                                                                                                                                                                   | 27.8 | 49        |
| 66 | Experimental influence of pH on the early life-stages of sea urchins II: increasing parental exposure<br>times gives rise to different responses. Invertebrate Reproduction and Development, 2014, 58, 161-175.                          | 0.8  | 49        |
| 67 | Feeding, metabolism and growth in the Antarctic limpet, Nacella concinna (Strebel 1908). Marine<br>Biology, 2001, 138, 553-560.                                                                                                          | 1.5  | 48        |
| 68 | Seasonal variation in the diversity and abundance of pelagic larvae of Antarctic marine invertebrates.<br>Marine Biology, 2009, 156, 2033-2047.                                                                                          | 1.5  | 48        |
| 69 | Latitudinal trends in shell production cost from the tropics to the poles. Science Advances, 2017, 3, e1701362.                                                                                                                          | 10.3 | 48        |
| 70 | Patterns of shell repair in articulate brachiopods indicate size constitutes a refuge from predation.<br>Marine Biology, 2009, 156, 1993-2000.                                                                                           | 1.5  | 47        |
| 71 | Hypoxia tolerance associated with activity reduction is a key adaptation for Laternula elliptica seasonal energetics. Oecologia, 2007, 153, 29-36.                                                                                       | 2.0  | 46        |
| 72 | Strong Population Genetic Structure in a Broadcast-Spawning Antarctic Marine Invertebrate. Journal of Heredity, 2011, 102, 55-66.                                                                                                        | 2.4  | 45        |

| #  | Article                                                                                                                                                                                                                      | IF        | CITATIONS     |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------------|
| 73 | Highâ€Energy Phosphate Metabolism during Exercise and Recovery in Temperate and Antarctic Scallops:<br>An In Vivo 31Pâ€NMR Study. Physiological and Biochemical Zoology, 2003, 76, 622-633.                                  | 1.5       | 44            |
| 74 | Genomics: applications to Antarctic ecosystems. Polar Biology, 2005, 28, 351-365.                                                                                                                                            | 1.2       | 44            |
| 75 | Brachiopods and climate change. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 2007, 98, 451-456.                                                                                           | 0.3       | 44            |
| 76 | Low heat shock thresholds in wild Antarctic inter-tidal limpets (Nacella concinna). Cell Stress and Chaperones, 2008, 13, 51-58.                                                                                             | 2.9       | 44            |
| 77 | No ocean acidification effects on shell growth and repair in the New Zealand brachiopod Calloria inconspicua (Sowerby, 1846). ICES Journal of Marine Science, 2016, 73, 920-926.                                             | 2.5       | 44            |
| 78 | Acidification effects on biofouling communities: winners and losers. Global Change Biology, 2015, 21, 1907-1913.                                                                                                             | 9.5       | 43            |
| 79 | Thermal plasticity of mitochondria: A latitudinal comparison between Southern Ocean molluscs.<br>Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2009, 152,<br>423-430.                  | 1.8       | 40            |
| 80 | Growth in the slow lane: protein metabolism in the Antarctic limpet <i>Nacella concinna</i> (Strebel) Tj ETQq0 0                                                                                                             | 0 rgBT /O | verlock 10 Tf |
| 81 | Trace metals in the Antarctic soft-shelled clam Laternula elliptica : implications for metal pollution from Antarctic research stations. Polar Biology, 2001, 24, 808-817.                                                   | 1.2       | 36            |
| 82 | Movements and burrowing activity in the Antarctic bivalve molluscs Laternula elliptica and Yoldia<br>eightsi. Polar Biology, 2004, 27, 357-367.                                                                              | 1.2       | 35            |
| 83 | Multi-year observations on the gametogenic ecology of the Antarctic seastar Odontaster validus.<br>Marine Biology, 2007, 153, 15-23.                                                                                         | 1.5       | 35            |
| 84 | Seasonal variation in the gametogenic ecology of the Antarctic scallop Adamussium colbecki. Polar<br>Biology, 2003, 26, 727-733.                                                                                             | 1.2       | 33            |
| 85 | Thermal Reaction Norms and the Scale of Temperature Variation: Latitudinal Vulnerability of<br>Intertidal Nacellid Limpets to Climate Change. PLoS ONE, 2012, 7, e52818.                                                     | 2.5       | 29            |
| 86 | Physiological flexibility: the key to success and survival for Antarctic fairy shrimps in highly fluctuating extreme environments. Freshwater Biology, 2004, 49, 1195-1205.                                                  | 2.4       | 28            |
| 87 | Low global sensitivity of metabolic rate to temperature in calcified marine invertebrates. Oecologia, 2014, 174, 45-54.                                                                                                      | 2.0       | 28            |
| 88 | Thicker Shells Compensate Extensive Dissolution in Brachiopods under Future Ocean Acidification.<br>Environmental Science & Technology, 2019, 53, 5016-5026.                                                                 | 10.0      | 28            |
| 89 | Protein Synthesis, RNA Concentrations, Nitrogen Excretion, and Metabolism Vary Seasonally in the<br>Antarctic Holothurian Heterocucumis steineni (Ludwig 1898). Physiological and Biochemical Zoology,<br>2004, 77, 556-569. | 1.5       | 27            |
| 90 | Characterisation of the mantle transcriptome and biomineralisation genes in the blunt-gaper clam,<br>Mya truncata. Marine Genomics, 2016, 27, 47-55.                                                                         | 1.1       | 27            |

| #   | Article                                                                                                                                                                                            | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Ship traffic connects Antarctica's fragile coasts to worldwide ecosystems. Proceedings of the<br>National Academy of Sciences of the United States of America, 2022, 119, .                        | 7.1  | 27        |
| 92  | A global horizon scan of issues impacting marine and coastal biodiversity conservation. Nature Ecology and Evolution, 2022, 6, 1262-1270.                                                          | 7.8  | 27        |
| 93  | Antarctic intertidal limpet ecophysiology: A winter–summer comparison. Journal of Experimental<br>Marine Biology and Ecology, 2011, 403, 39-45.                                                    | 1.5  | 25        |
| 94  | Adaptation of Proteins to the Cold in Antarctic Fish: A Role for Methionine?. Genome Biology and Evolution, 2019, 11, 220-231.                                                                     | 2.5  | 25        |
| 95  | Antarctic ecosystem responses following iceâ€shelf collapse and iceberg calving: Science review and future research. Wiley Interdisciplinary Reviews: Climate Change, 2021, 12, .                  | 8.1  | 25        |
| 96  | Resilience in Greenland intertidal Mytilus: The hidden stress defense. Science of the Total<br>Environment, 2021, 767, 144366.                                                                     | 8.0  | 25        |
| 97  | DeVries: the Art of not freezing fish. Journal of Experimental Biology, 2015, 218, 2146-2147.                                                                                                      | 1.7  | 24        |
| 98  | Spatial and temporal dynamics of Antarctic shallow soft-bottom benthic communities: ecological drivers under climate change. BMC Ecology, 2019, 19, 27.                                            | 3.0  | 23        |
| 99  | Metabolic flexibility: the key to long-term evolutionary success in Bryozoa?. Proceedings of the Royal<br>Society B: Biological Sciences, 2004, 271, S18-21.                                       | 2.6  | 22        |
| 100 | Invertebrate muscle performance at high latitude: swimming activity in the Antarctic scallop,<br>Adamussium colbecki. Polar Biology, 2005, 28, 464-469.                                            | 1.2  | 21        |
| 101 | Lack of long-term acclimation in Antarctic encrusting species suggests vulnerability to warming.<br>Nature Communications, 2019, 10, 3383.                                                         | 12.8 | 21        |
| 102 | Legacy and Emerging Persistent Organic Pollutants in Antarctic Benthic Invertebrates near Rothera<br>Point, Western Antarctic Peninsula. Environmental Science & Technology, 2020, 54, 2763-2771.  | 10.0 | 21        |
| 103 | Sweepstake reproductive success and collective dispersal produce chaotic genetic patchiness in a broadcast spawner. Science Advances, 2021, 7, eabj4713.                                           | 10.3 | 21        |
| 104 | Thermal dependency of burrowing in three species within the bivalve genus Laternula: a latitudinal comparison. Marine Biology, 2009, 156, 1977-1984.                                               | 1.5  | 19        |
| 105 | Limpet feeding rate and the consistency of physiological response to temperature. Journal of<br>Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2014, 184, 563-570. | 1.5  | 18        |
| 106 | Very slow embryonic and larval development in the Antarctic limpet Nacella polaris. Polar Biology, 2016, 39, 2273-2280.                                                                            | 1.2  | 15        |
| 107 | Reproductive ecology of the circumpolar Antarctic nemertean Parborlasia corrugatus: No evidence for inter-annual variation. Journal of Experimental Marine Biology and Ecology, 2011, 404, 98-107. | 1.5  | 14        |
| 108 | Variability among individuals is generated at the gene expression level. Ecology, 2015, 96, 2004-2014.                                                                                             | 3.2  | 14        |

| #   | Article                                                                                                                                                                                     | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Molecular Responses to Thermal and Osmotic Stress in Arctic Intertidal Mussels (Mytilus edulis): The<br>Limits of Resilience. Genes, 2022, 13, 155.                                         | 2.4 | 14        |
| 110 | Burrowing in the Antarctic anemone, Halcampoides sp., from Signy Island, Antarctica. Journal of<br>Experimental Marine Biology and Ecology, 2000, 252, 45-55.                               | 1.5 | 13        |
| 111 | Metabolic responses to temperature stress under elevated pCO2 in Crepidula fornicata. Journal of<br>Molluscan Studies, 2015, 81, 238-246.                                                   | 1.2 | 13        |
| 112 | A century of coping with environmental and ecological changes via compensatory biomineralization in mussels. Global Change Biology, 2021, 27, 624-639.                                      | 9.5 | 13        |
| 113 | Latitudinal patterns in intertidal ecosystem structure in West Greenland suggest resilience to climate change. Ecography, 2021, 44, 1156-1168.                                              | 4.5 | 13        |
| 114 | Remote Sensing Phenology of Antarctic Green and Red Snow Algae Using WorldView Satellites.<br>Frontiers in Plant Science, 2021, 12, 671981.                                                 | 3.6 | 13        |
| 115 | Quantifying susceptibility of marine invertebrate biocomposites to dissolution in reduced pH. Royal Society Open Science, 2019, 6, 190252.                                                  | 2.4 | 12        |
| 116 | Global gradients in intertidal species richness and functional groups. ELife, 2021, 10, .                                                                                                   | 6.0 | 12        |
| 117 | Hierarchical Population Genetic Structure in a Direct Developing Antarctic Marine Invertebrate. PLoS<br>ONE, 2013, 8, e63954.                                                               | 2.5 | 10        |
| 118 | Morphological variation in taxonomic characters of the Antarctic starfish Odontaster validus. Polar<br>Biology, 2018, 41, 2159-2165.                                                        | 1.2 | 10        |
| 119 | Large within, and between, species differences in marine cellular responses: Unpredictability in a changing environment. Science of the Total Environment, 2021, 794, 148594.               | 8.0 | 10        |
| 120 | A Light, Portable Apparatus for the Assessment of Invertebrate Heartbeat Rate. Journal of Experimental<br>Biology, 1988, 136, 495-498.                                                      | 1.7 | 10        |
| 121 | The reproductive ecology of the Antarctic bivalve Aequiyoldia eightsii (Protobranchia: Sareptidae)<br>follows neither Antarctic nor taxonomic patterns. Polar Biology, 2018, 41, 1693-1706. | 1.2 | 9         |
| 122 | Growth of the Antarctic octocoral Primnoella scotiae and predation by the anemone Dactylanthus antarcticus. Deep-Sea Research Part II: Topical Studies in Oceanography, 2013, 92, 73-78.    | 1.4 | 8         |
| 123 | Seasonality of oxygen consumption in five common Antarctic benthic marine invertebrates. Polar<br>Biology, 2018, 41, 897-908.                                                               | 1.2 | 8         |
| 124 | Benthic Biodiversity, Carbon Storage and the Potential for Increasing Negative Feedbacks on Climate<br>Change in Shallow Waters of the Antarctic Peninsula. Biology, 2022, 11, 320.         | 2.8 | 8         |
| 125 | Life Beyond the Ice. , 2015, , 229-252.                                                                                                                                                     |     | 7         |
| 126 | Shell thickness of Nucella lapillus in the North Sea increased over the last 130 years despite ocean acidification. Communications Earth & Environment, 2022, 3, .                          | 6.8 | 6         |

| #   | Article                                                                                                                                                 | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Life in the freezer: protein metabolism in Antarctic fish. Royal Society Open Science, 2022, 9, 211272.                                                 | 2.4 | 5         |
| 128 | Juvenile morphology of the large Antarctic canopy-forming brown alga, Desmarestia menziesii J.<br>Agardh. Polar Biology, 2019, 42, 2097-2103.           | 1.2 | 4         |
| 129 | Multiyear trend in reproduction underpins interannual variation in gametogenic development of an Antarctic urchin. Scientific Reports, 2021, 11, 18868. | 3.3 | 2         |
| 130 | Understanding Adaptations and Responses to Change in Antarctica: Recent Physiological and Genomic Advances in Marine Environments. , 2012, , 157-182.   |     | 2         |
| 131 | Evidence for Carbonate System Mediated Shape Shift in an Intertidal Predatory Gastropod. Frontiers in<br>Marine Science, 0, 9, .                        | 2.5 | 2         |
| 132 | Response to van der Meer. Current Biology, 2017, 27, R1303-R1304.                                                                                       | 3.9 | 1         |
| 133 | Variable heat shock response in Antarctic biofouling serpulid worms. Cell Stress and Chaperones, 2021, 26, 945-954.                                     | 2.9 | 1         |
| 134 | Life in the extreme environments of our planet under pressure. , 2020, , 151-183.                                                                       |     | 0         |
| 135 | The ecophysiology of responding to change in polar marine benthos. , 2020, , 184-217.                                                                   |     | 0         |