
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8846426/publications.pdf

Version: 2024-02-01

FIREDT CEUZE

#	Article	IF	CITATIONS
1	The resilience framework as a strategy to combat stress-related disorders. Nature Human Behaviour, 2017, 1, 784-790.	6.2	420
2	International meta-analysis of PTSD genome-wide association studies identifies sex- and ancestry-specific genetic risk loci. Nature Communications, 2019, 10, 4558.	5.8	363
3	Smaller Hippocampal Volume in Posttraumatic Stress Disorder: A Multisite ENIGMA-PGC Study: Subcortical Volumetry Results From Posttraumatic Stress Disorder Consortia. Biological Psychiatry, 2018, 83, 244-253.	0.7	335
4	Neural correlates of personality: An integrative review. Neuroscience and Biobehavioral Reviews, 2013, 37, 73-95.	2.9	196
5	Altered Pain Processing in Veterans With Posttraumatic Stress Disorder. Archives of General Psychiatry, 2007, 64, 76.	13.8	190
6	Traumatic stress and accelerated DNA methylation age: A meta-analysis. Psychoneuroendocrinology, 2018, 92, 123-134.	1.3	190
7	Longitudinal changes of telomere length and epigenetic age related to traumatic stress and post-traumatic stress disorder. Psychoneuroendocrinology, 2015, 51, 506-512.	1.3	186
8	Glucocorticoid Receptor Pathway Components Predict Posttraumatic Stress Disorder Symptom Development: A Prospective Study. Biological Psychiatry, 2012, 71, 309-316.	0.7	178
9	Pre-Existing High Glucocorticoid Receptor Number Predicting Development of Posttraumatic Stress Symptoms After Military Deployment. American Journal of Psychiatry, 2011, 168, 89-96.	4.0	162
10	Thinner prefrontal cortex in veterans with posttraumatic stress disorder. NeuroImage, 2008, 41, 675-681.	2.1	137
11	Predicting PTSD: Pre-existing vulnerabilities in glucocorticoid-signaling and implications for preventive interventions. Brain, Behavior, and Immunity, 2013, 30, 12-21.	2.0	107
12	Neural correlates of associative learning and memory in veterans with posttraumatic stress disorder. Journal of Psychiatric Research, 2008, 42, 659-669.	1.5	97
13	A computational solution for bolstering reliability of epigenetic clocks: implications for clinical trials and longitudinal tracking. Nature Aging, 2022, 2, 644-661.	5.3	95
14	Predicting Treatment Outcome in PTSD: A Longitudinal Functional MRI Study on Trauma-Unrelated Emotional Processing. Neuropsychopharmacology, 2016, 41, 1156-1165.	2.8	89
15	Resting state functional connectivity of the anterior cingulate cortex in veterans with and without post-traumatic stress disorder. Human Brain Mapping, 2015, 36, 99-109.	1.9	84
16	Epigenome-wide meta-analysis of PTSD across 10 military and civilian cohorts identifies methylation changes in AHRR. Nature Communications, 2020, 11, 5965.	5.8	84
17	Glucocorticoid sensitivity of leukocytes predicts PTSD, depressive and fatigue symptoms after military deployment: A prospective study. Psychoneuroendocrinology, 2012, 37, 1822-1836.	1.3	81
18	Neural Correlates of Inhibition and Contextual Cue Processing Related to Treatment Response in PTSD. Neuropsychopharmacology, 2015, 40, 667-675.	2.8	78

#	Article	IF	CITATIONS
19	Shared vulnerability for connectome alterations across psychiatric and neurological brain disorders. Nature Human Behaviour, 2019, 3, 988-998.	6.2	75
20	Post-traumatic stress symptoms 5 years after military deployment to Afghanistan: an observational cohort study. Lancet Psychiatry,the, 2016, 3, 58-64.	3.7	71
21	Neuropsychological performance is related to current social and occupational functioning in veterans with posttraumatic stress disorder. Depression and Anxiety, 2009, 26, 7-15.	2.0	69
22	Epigenomeâ€wide association of PTSD from heterogeneous cohorts with a common multiâ€site analysis pipeline. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2017, 174, 619-630.	1.1	69
23	Altered white matter microstructural organization in posttraumatic stress disorder across 3047 adults: results from the PGC-ENIGMA PTSD consortium. Molecular Psychiatry, 2021, 26, 4315-4330.	4.1	69
24	Persistent and reversible consequences of combat stress on the mesofrontal circuit and cognition. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15508-15513.	3.3	64
25	SKA2 Methylation is Involved in Cortisol Stress Reactivity and Predicts the Development of Post-Traumatic Stress Disorder (PTSD) After Military Deployment. Neuropsychopharmacology, 2016, 41, 1350-1356.	2.8	64
26	An epigenome-wide association study of posttraumatic stress disorder in US veterans implicates several new DNA methylation loci. Clinical Epigenetics, 2020, 12, 46.	1.8	64
27	Successful treatment of post-traumatic stress disorder reverses DNA methylation marks. Molecular Psychiatry, 2021, 26, 1264-1271.	4.1	64
28	A prospective study on personality and the cortisol awakening response to predict posttraumatic stress symptoms in response to military deployment. Journal of Psychiatric Research, 2011, 45, 713-719.	1.5	62
29	Pharmacotherapy for disordered sleep in post-traumatic stress disorder: a systematic review. International Clinical Psychopharmacology, 2006, 21, 193-202.	0.9	61
30	Impaired right inferior frontal gyrus response to contextual cues in male veterans with PTSD during response inhibition. Journal of Psychiatry and Neuroscience, 2014, 39, 330-338.	1.4	59
31	Differences in the response to the combined DEX-CRH test between PTSD patients with and without co-morbid depressive disorder. Psychoneuroendocrinology, 2008, 33, 313-320.	1.3	57
32	Selfâ€reported early trauma as a predictor of adult personality: a study in a military sample. Journal of Clinical Psychology, 2008, 64, 863-875.	1.0	56
33	Treatment Outcome-Related White Matter Differences in Veterans with Posttraumatic Stress Disorder. Neuropsychopharmacology, 2015, 40, 2434-2442.	2.8	54
34	Cortical volume abnormalities in posttraumatic stress disorder: an ENIGMA-psychiatric genomics consortium PTSD workgroup mega-analysis. Molecular Psychiatry, 2021, 26, 4331-4343.	4.1	52
35	Differentiation of pain ratings in combat-related posttraumatic stress disorder. Pain, 2009, 143, 179-185.	2.0	49
36	Longitudinal epigenome-wide association studies of three male military cohorts reveal multiple CpG sites associated with post-traumatic stress disorder. Clinical Epigenetics, 2020, 12, 11.	1.8	45

#	Article	IF	CITATIONS
37	Type D personality and the development of PTSD symptoms: A prospective study Journal of Abnormal Psychology, 2011, 120, 299-307.	2.0	42
38	Hostility is related to clusters of T-cell cytokines and chemokines in healthy men. Psychoneuroendocrinology, 2008, 33, 1041-1050.	1.3	41
39	Cytokine Production by Leukocytes of Military Personnel with Depressive Symptoms after Deployment to a Combat-Zone: A Prospective, Longitudinal Study. PLoS ONE, 2011, 6, e29142.	1.1	36
40	Precuneal activity during encoding in veterans with posttraumatic stress disorder. Progress in Brain Research, 2007, 167, 293-297.	0.9	35
41	Molecular genetic overlap between posttraumatic stress disorder and sleep phenotypes. Sleep, 2020, 43, .	0.6	32
42	Cytokine production as a putative biological mechanism underlying stress sensitization in high combat exposed soldiers. Psychoneuroendocrinology, 2015, 51, 534-546.	1.3	31
43	The effect of deployment to a combat zone on testosterone levels and the association with the development of posttraumatic stress symptoms: A longitudinal prospective Dutch military cohort study. Psychoneuroendocrinology, 2015, 51, 525-533.	1.3	31
44	Resting-state functional connectivity in combat veterans suffering from impulsive aggression. Social Cognitive and Affective Neuroscience, 2017, 12, 1881-1889.	1.5	31
45	Personality dimensions harm avoidance and self-directedness predict the cortisol awakening response in military men. Biological Psychology, 2009, 81, 177-183.	1.1	28
46	Glucocorticoid receptor number predicts increase in amygdala activity after severe stress. Psychoneuroendocrinology, 2012, 37, 1837-1844.	1.3	28
47	Individual prediction of psychotherapy outcome in posttraumatic stress disorder using neuroimaging data. Translational Psychiatry, 2019, 9, 326.	2.4	27
48	MicroRNA regulation of persistent stress-enhanced memory. Molecular Psychiatry, 2020, 25, 965-976.	4.1	27
49	Pharmacotherapeutic Treatment of Nightmares and Insomnia in Posttraumatic Stress Disorder: An Overview of the Literature. Annals of the New York Academy of Sciences, 2006, 1071, 502-507.	1.8	26
50	Does non-invasive brain stimulation modulate emotional stress reactivity?. Social Cognitive and Affective Neuroscience, 2020, 15, 23-51.	1.5	26
51	Anger and aggression problems in veterans are associated with an increased acoustic startle reflex. Biological Psychology, 2017, 123, 119-125.	1.1	25
52	Deployment-related severe fatigue with depressive symptoms is associated with increased glucocorticoid binding to peripheral blood mononuclear cells. Brain, Behavior, and Immunity, 2009, 23, 1132-1139.	2.0	23
53	Individual variation in plasma oxytocin and vasopressin levels in relation to the development of combat-related PTSD in a large military cohort. Journal of Psychiatric Research, 2017, 94, 88-95.	1.5	22
54	Pre-deployment differences in glucocorticoid sensitivity of leukocytes in soldiers developing symptoms of PTSD, depression or fatigue persist after return from military deployment. Psychoneuroendocrinology, 2015, 51, 513-524.	1.3	21

#	Article	IF	CITATIONS
55	Enhancing Discovery of Genetic Variants for Posttraumatic Stress Disorder Through Integration of Quantitative Phenotypes and Trauma Exposure Information. Biological Psychiatry, 2022, 91, 626-636.	0.7	21
56	Epigenome-wide meta-analysis of PTSD symptom severity in three military cohorts implicates DNA methylation changes in genes involved in immune system and oxidative stress. Molecular Psychiatry, 2022, 27, 1720-1728.	4.1	21
57	Altered functional connectivity in posttraumatic stress disorder with versus without comorbid major depressive disorder: a resting state fMRI study. F1000Research, 2013, 2, 289.	0.8	20
58	Type D Personality, Temperament, and Mental Health in Military Personnel Awaiting Deployment. International Journal of Behavioral Medicine, 2011, 18, 131-138.	0.8	19
59	Longitudinal measures of hostility in deployed military personnel. Psychiatry Research, 2015, 229, 479-484.	1.7	19
60	Development of psychopathology in deployed armed forces in relation to plasma GABA levels. Psychoneuroendocrinology, 2016, 73, 263-270.	1.3	19
61	Cohort profile: the Prospective Research In Stress-Related Military Operations (PRISMO) study in the Dutch Armed Forces. BMJ Open, 2019, 9, e026670.	0.8	18
62	Childhood trauma and the role of self-blame on psychological well-being after deployment in male veterans. Högre Utbildning, 2019, 10, 1558705.	1.4	18
63	Time-dependent effects of psychosocial stress on the contextualization of neutral memories. Psychoneuroendocrinology, 2019, 108, 140-149.	1.3	17
64	Symptom structure of PTSD: support for a hierarchical model separating core PTSD symptoms from dysphoria. HA¶gre Utbildning, 2012, 3, .	1.4	15
65	Biological profiling of plasma neuropeptide Y in relation to posttraumatic stress symptoms in two combat cohorts. Biological Psychology, 2018, 134, 72-79.	1.1	15
66	Long-term development of post-traumatic stress symptoms and associated risk factors in military service members deployed to Afghanistan: Results from the PRISMO 10-year follow-up. European Psychiatry, 2021, 64, e10.	0.1	14
67	IL-1β reactivity and the development of severe fatigue after military deployment: a longitudinal study. Journal of Neuroinflammation, 2012, 9, 205.	3.1	13
68	Barriers and facilitators for treatment-seeking for mental health conditions and substance misuse: multi-perspective focus group study within the military. BJPsych Open, 2020, 6, e146.	0.3	12
69	Proximity alert! Distance related cuneus activation in military veterans with anger and aggression problems. Psychiatry Research - Neuroimaging, 2017, 266, 114-122.	0.9	11
70	The effect of genetic vulnerability and military deployment on the development of post-traumatic stress disorder and depressive symptoms. European Neuropsychopharmacology, 2019, 29, 405-415.	0.3	11
71	The long-term burden of military deployment on the health care system. Journal of Psychiatric Research, 2016, 79, 78-85.	1.5	10
72	Circulating Serum MicroRNAs as Potential Diagnostic Biomarkers of Posttraumatic Stress Disorder: A Pilot Study. Frontiers in Genetics, 2019, 10, 1042.	1.1	10

#	Article	IF	CITATIONS
73	Regions of white matter abnormalities in the arcuate fasciculus in veterans with anger and aggression problems. Brain Structure and Function, 2020, 225, 1401-1411.	1.2	10
74	Effects of tDCS during inhibitory control training on performance and PTSD, aggression and anxiety symptoms: a randomized-controlled trial in a military sample. Psychological Medicine, 2022, 52, 3964-3974.	2.7	10
75	Individual differences in the encoding of contextual details following acute stress: An explorative study. European Journal of Neuroscience, 2022, 55, 2714-2738.	1.2	9
76	Coordinating Global Multi-Site Studies of Military-Relevant Traumatic Brain Injury: Opportunities, Challenges, and Harmonization Guidelines. Brain Imaging and Behavior, 2021, 15, 585-613.	1.1	9
77	Multivariate genome-wide analysis of stress-related quantitative phenotypes. European Neuropsychopharmacology, 2019, 29, 1354-1364.	0.3	7
78	No Time-Dependent Effects of Psychosocial Stress on Fear Contextualization and Generalization: A Randomized-Controlled Study With Healthy Participants. Chronic Stress, 2019, 3, 247054701989654.	1.7	6
79	<scp>Ageâ€dependent</scp> white matter disruptions after military traumatic brain injury: Multivariate analysis results from <scp>ENIGMA</scp> brain injury. Human Brain Mapping, 2022, 43, 2653-2667.	1.9	6
80	Decision (not) to disclose mental health conditions or substance abuse in the work environment: a multiperspective focus group study within the military. BMJ Open, 2021, 11, e049370.	0.8	5
81	The Predictive Value of Early-Life Trauma, Psychopathy, and the Testosterone–Cortisol Ratio for Impulsive Aggression Problems in Veterans. Chronic Stress, 2019, 3, 247054701987190.	1.7	4
82	Acceptability of tDCS in treating stress-related mental health disorders: a mixed methods study among military patients and caregivers. BMC Psychiatry, 2021, 21, 97.	1.1	4
83	Associations between the development of PTSD symptoms and longitudinal changes in the DNA methylome of deployed military servicemen: A comparison with polygenic risk scores. Comprehensive Psychoneuroendocrinology, 2020, 4, 100018.	0.7	4
84	Seeking treatment for mental illness and substance abuse: A cross-sectional study on attitudes, beliefs, and needs of military personnel with and without mental illness. Journal of Psychiatric Research, 2022, 147, 221-231.	1.5	4
85	Trauma and posttraumatic stress disorder modulate polygenic predictors of hippocampal and amygdala volume. Translational Psychiatry, 2021, 11, 637.	2.4	4
86	Neuroimaging of Pain Perception in Dutch Veterans With and Without Posttraumatic Stress Disorder: Preliminary Results. Annals of the New York Academy of Sciences, 2006, 1071, 401-404.	1.8	3
87	The Relationship between Resilience Resources and Long-Term Deployment-Related PTSD Symptoms: A Longitudinal Study in Dutch Veterans. Military Behavioral Health, 2021, 9, 267-274.	0.4	3
88	Long-term risk for mental health symptoms in Dutch ISAF veterans: the role of perceived social support. Psychological Medicine, 2023, 53, 3355-3365.	2.7	3
89	Development of Self-Directedness and Cooperativeness in Relation to Post-Traumatic Stress Disorder Symptom Trajectories After Military Deployment. Chronic Stress, 2018, 2, 247054701880351.	1.7	0