Jia-Huai Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8846226/publications.pdf

Version: 2024-02-01

47 papers

3,749 citations

346980 22 h-index 286692 43 g-index

128 all docs

128 docs citations

times ranked

128

5094 citing authors

#	Article	IF	CITATIONS
1	The early days of structural biology at the Beijing Institute of Biophysics: In memory of Professor Zhengjiong Lin (1935–2022). Protein and Cell, 2022, , 1.	4.8	O
2	Pre–T cell receptors topologically sample self-ligands during thymocyte β-selection. Science, 2021, 371, 181-185.	6.0	25
3	Crystal structures of influenza nucleoprotein complexed with nucleic acid provide insights into the mechanism of RNA interaction. Nucleic Acids Research, 2021, 49, 4144-4154.	6.5	24
4	A general chemical crosslinking strategy for structural analyses of weakly interacting proteins applied to preTCR–pMHC complexes. Journal of Biological Chemistry, 2021, 296, 100255.	1.6	4
5	Netrin Synergizes Signaling and Adhesion through DCC. Trends in Biochemical Sciences, 2020, 45, 6-12.	3.7	21
6	T cell receptors, mechanosensors, catch bonds and immunotherapy. Progress in Biophysics and Molecular Biology, 2020, 153, 23-27.	1.4	13
7	Topological analysis of the gp41 MPER on lipid bilayers relevant to the metastable HIV-1 envelope prefusion state. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 22556-22566.	3.3	22
8	NMR: an essential structural tool for integrative studies of T cell development, pMHC ligand recognition and TCR mechanobiology. Journal of Biomolecular NMR, 2019, 73, 319-332.	1.6	18
9	The binding of DCC-P3 motif and FAK-FAT domain mediates the initial step of netrin-1/DCC signaling for axon attraction. Cell Discovery, 2018, 4, 8.	3.1	10
10	Structural Basis for Draxin-Modulated Axon Guidance and Fasciculation by Netrin-1 through DCC. Neuron, 2018, 97, 1261-1267.e4.	3.8	39
11	Crystal structure of HLA-B*5801 with a TW10 HIV Gag epitope reveals a novel mode of peptide presentation. Cellular and Molecular Immunology, 2017, 14, 631-634.	4.8	22
12	Distinct recognition of complement iC3b by integrins $\hat{l}\pm\langle sub \times X < sub \times \hat{l}^2 < sub \times 2 < sub \times and \hat{l}\pm\langle sub \times M < sub \times \hat{l}^2 < sub \times 2 < sub \times notation = 1 America, 2017, 114, 3403-3408.$	3.3	47
13	Structure of unliganded membrane-proximal domains FN4-FN5-FN6 of DCC. Protein and Cell, 2017, 8, 701-705.	4.8	2
14	Crystal structure of HLA-B*5801, a protective HLA allele for HIV-1 infection. Protein and Cell, 2016, 7, 761-765.	4.8	7
15	Structural basis of Dscam1 homodimerization: Insights into context constraint for protein recognition. Science Advances, 2016, 2, e1501118.	4.7	15
16	Structural Features of the $\hat{l}\pm\hat{l}^2TCR$ Mechanotransduction Apparatus That Promote pMHC Discrimination. Frontiers in Immunology, 2015, 6, 441.	2.2	55
17	Pre-TCR ligand binding impacts thymocyte development before $\hat{l}\pm\hat{l}^2$ TCR expression. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8373-8378.	3.3	62
18	Force-dependent transition in the T-cell receptor \hat{l}^2 -subunit allosterically regulates peptide discrimination and pMHC bond lifetime. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 1517-1522.	3.3	209

#	Article	IF	CITATIONS
19	Transmembrane signaling: A multiplex problem with converging solutions. Progress in Biophysics and Molecular Biology, 2015, 118, 87-88.	1.4	O
20	Codification of bidentate pMHC interaction with TCR and its co-receptor. Trends in Immunology, 2015, 36, 300-306.	2.9	14
21	Signaling mechanism of the netrin-1 receptor DCC in axon guidance. Progress in Biophysics and Molecular Biology, 2015, 118, 153-160.	1.4	60
22	Terazosin activates Pgk1 and Hsp90 to promote stress resistance. Nature Chemical Biology, 2015, 11, 19-25.	3.9	84
23	The immunology connection—my first T cell receptor structure projects. Protein and Cell, 2014, 5, 649-652.	4.8	0
24	The Crystal Structure of Netrin-1 in Complex with DCC Reveals the Bifunctionality of Netrin-1 As a Guidance Cue. Neuron, 2014, 83, 839-849.	3.8	103
25	Neuropilin-1 functions as a VEGFR2 co-receptor to guide developmental angiogenesis independent of ligand binding. ELife, 2014, 3, e03720.	2.8	117
26	N-terminal horseshoe conformation of DCC is functionally required for axon guidance and might be shared by other neural receptors. Journal of Cell Science, 2013, 126, 186-195.	1.2	27
27	The sequence signature of an Ig-fold. Protein and Cell, 2013, 4, 569-572.	4.8	27
28	Revisiting the putative TCR $\hat{\text{Cl}}_{\pm}$ dimerization model through structural analysis. Frontiers in Immunology, 2013, 4, 16.	2.2	7
29	Pull and push: Talin activation for integrin signaling. Cell Research, 2012, 22, 1512-1514.	5.7	34
30	The structural basis of αβ Tâ€lineage immune recognition: <scp>TCR</scp> docking topologies, mechanotransduction, and coâ€receptor function. Immunological Reviews, 2012, 250, 102-119.	2.8	92
31	A New Angle on TCR Activation. Immunity, 2011, 35, 658-660.	6.6	4
32	A Conserved Hydrophobic Patch on $\hat{V^2}$ Domains Revealed by TCR \hat{I}^2 Chain Crystal Structures: Implications for Pre-TCR Dimerization. Frontiers in Immunology, 2011, 2, 5.	2.2	17
33	The CHINA CONNECTION: Michael Rossmann and his first encounter with me. Protein and Cell, 2010, 1, 6-8.	4.8	0
34	Immunodominant-Peptide Recognition: Beta Testing TCR \hat{l} ± \hat{l} 2. Immunity, 2008, 28, 139-141.	6.6	4
35	Structural basis of Dscam isoform specificity. Nature, 2007, 449, 487-491.	13.7	146
36	Structural basis for allostery in integrins and binding to fibrinogen-mimetic therapeutics. Nature, 2004, 432, 59-67.	13.7	762

#	Article	IF	CITATIONS
37	Assembling atomic resolution views of the immunological synapse. Current Opinion in Immunology, 2003, 15, 286-293.	2.4	5
38	Structures of the $\hat{l}_{\pm}L$ I Domain and Its Complex with ICAM-1 Reveal a Shape-Shifting Pathway for Integrin Regulation. Cell, 2003, 112, 99-111.	13.5	499
39	Protein recognition by cell surface receptors: physiological receptors versus virus interactions. Trends in Biochemical Sciences, 2002, 27, 122-126.	3.7	69
40	Mutational analysis of MAdCAM- $1/\hat{l}\pm4\hat{l}^27$ interactions reveals significant binding determinants in both the first and second immunoglobulin domains. Cell Adhesion and Communication, 1999, 7, 167-181.	1.7	20
41	The Crystal Structure of a T Cell Receptor in Complex with Peptide and MHC Class II. Science, 1999, 286, 1913-1921.	6.0	376
42	Atomic structure of an alpha beta T cell receptor (TCR) heterodimer in complex with an anti-TCR Fab fragment derived from a mitogenic antibody. EMBO Journal, 1998, 17, 10-26.	3.5	159
43	Structural specializations of immunoglobulin superfamily members for adhesion to integrins and viruses. Immunological Reviews, 1998, 163, 197-215.	2.8	161
44	Identification of a common docking topology with substantial variation among different TCR–peptide–MHC complexes. Current Biology, 1998, 8, 409-414.	1.8	105
45	The insulin connection: Dorothy Hodgkin and the Beijing Insulin Group. Trends in Biochemical Sciences, 1998, 23, 497-500.	3.7	4
46	Differential thymic selection outcomes stimulated by focal structural alteration in peptide/major histocompatibility complex ligands. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 10061-10066.	3.3	53
47	A dimeric crystal structure for the N-terminal two domains of intercellular adhesion molecule-1. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 4134-4139.	3.3	204