
Marek Wisniewski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8846091/publications.pdf Version: 2024-02-01

#		IF	CITATIONS
1	Comments on a€œinteraction of graphene oxide with lysozyme: Insights from conformational structure and surface charge investigations―by Binbin Li, Changchun Hao, Hengyu Liu, Haiyan Yang, Kunfeng Zhong, Mingduo Zhang, Runguang Sun published in spectrochimica acta part A: Molecular and biomolecular spectroscopy 264 (2022) 120207. Spectrochimica Acta - Part A: Molecular and	2.0	0
2	Determination of Graphene Oxide Adsorption Space by Lysozyme Uptake─Mechanistic Studies. Journal of Physical Chemistry B, 2022, 126, 928-933.	1.2	5
3	Sorption and Magnetic Properties of Oxalato-Based Trimetallic Open Framework Stabilized by Charge-Assisted Hydrogen Bonds. International Journal of Molecular Sciences, 2022, 23, 1556.	1.8	2
4	Underestimated Properties of Nanosized Amorphous Titanium Dioxide. International Journal of Molecular Sciences, 2022, 23, 2460.	1.8	4
5	A Simple Replica Method as the Way to Obtain a Morphologically and Mechanically Bone-like Iron-Based Biodegradable Material. Materials, 2022, 15, 4552.	1.3	3
6	MOF materials as therapeutic agents, drug carriers, imaging agents and biosensors in cancer biomedicine: Recent advances and perspectives. Progress in Materials Science, 2021, 117, 100743.	16.0	120
7	A New Approach to Obtaining Nano-Sized Graphene Oxide for Biomedical Applications. Materials, 2021, 14, 1327.	1.3	5
8	New Insight into the Fluorescence Quenching of Nitrogen-Containing Carbonaceous Quantum Dots—From Surface Chemistry to Biomedical Applications. Materials, 2021, 14, 2454.	1.3	13
9	Protein Corona Hinders N-CQDs Oxidative Potential and Favors Their Application as Nanobiocatalytic System. International Journal of Molecular Sciences, 2021, 22, 8136.	1.8	7
10	Liquid phase adsorption induced nanosizing of graphene oxide. Carbon, 2021, 183, 948-957.	5.4	6
11	Copper Nitride Nanowire Arrays—Comparison of Synthetic Approaches. Materials, 2021, 14, 603.	1.3	7
12	Porphyrin Based 2D-MOF Structures as Dual-Kinetic Sorafenib Nanocarriers for Hepatoma Treatment. International Journal of Molecular Sciences, 2021, 22, 11161.	1.8	6
13	Ciprofloxacin and Graphene Oxide Combination—New Face of a Known Drug. Materials, 2020, 13, 4224.	1.3	9
14	Cytotoxic or Not? Disclosing the Toxic Nature of Carbonaceous Nanomaterials through Nano–Bio Interactions. Materials, 2020, 13, 2060.	1.3	18
15	Atomic-scale molecular models of oxidized activated carbon fibre nanoregions: Examining the effects of oxygen functionalities on wet formaldehyde adsorption. Carbon, 2020, 165, 67-81.	5.4	19
16	Non-thermal plasma-assisted catalytic CO2 conversion over Zn-TCPP 2D catalyst. Adsorption, 2020, 26, 1165-1171.	1.4	5
17	Carbonaceous Nanomaterials-Mediated Defense Against Oxidative Stress. Mini-Reviews in Medicinal Chemistry, 2020, 20, 294-307.	1.1	3
18	Mechanistic aspects of water adsorption-desorption in porphyrin containing MOFs. Microporous and Mesoporous Materials, 2019, 290, 109649.	2.2	9

#	Article	IF	CITATIONS
19	Testing the self-cleaning properties of a coordination polymer surface. Adsorption, 2019, 25, 33-39.	1.4	1
20	Stability of coordination polymers in water: state of the art and towards a methodology for nonporous materials. Adsorption, 2019, 25, 1-11.	1.4	10
21	New strategy of controlled, stepwise release from novel MBioF and its potential application for drug delivery systems. Adsorption, 2019, 25, 383-391.	1.4	3
22	Correlation between the catalytic and electrocatalytic properties of nitrogen-doped carbon nanoonions and the polarity of the carbon surface: Experimental and theoretical investigations. Carbon, 2019, 151, 120-129.	5.4	11
23	Ullmann Reactions of Carbon Nanotubes—Advantageous and Unexplored Functionalization toward Tunable Surface Chemistry. Nanomaterials, 2019, 9, 1619.	1.9	9
24	Water Nanodroplet on a Hydrocarbon "Carpetâ€â€"The Mechanism of Water Contact Angle Stabilization by Airborne Contaminations on Graphene, Au, and PTFE Surfaces. Langmuir, 2019, 35, 420-427.	1.6	17
25	Super-sieving effect in phenol adsorption from aqueous solutions on nanoporous carbon beads. Carbon, 2018, 135, 12-20.	5.4	34
26	Novel biocatalytic systems for maintaining the nucleotide balance based on adenylate kinase immobilized on carbon nanostructures. Materials Science and Engineering C, 2018, 88, 130-139.	3.8	15
27	Nanoscale Water Contact Angle on Polytetrafluoroethylene Surfaces Characterized by Molecular Dynamics–Atomic Force Microscopy Imaging. Langmuir, 2018, 34, 4526-4534.	1.6	37
28	Cystine-based MBioF for Maintaining the Antioxidant–Oxidant Balance in Airway Diseases. ACS Medicinal Chemistry Letters, 2018, 9, 1280-1284.	1.3	6
29	Phenol Molecular Sheets Woven by Water Cavities in Hydrophobic Slit Nanospaces. Langmuir, 2018, 34, 15150-15159.	1.6	1
30	Graphene Oxide-Mediated Protection from Photodamage. Journal of Physical Chemistry Letters, 2018, 9, 3241-3244.	2.1	16
31	Chemical and Biochemical Approach to Make a Perfect Biocatalytic System on Carbonaceous Matrices. Methods in Enzymology, 2018, 609, 221-245.	0.4	3
32	Air pollution, UV irradiation and skin carcinogenesis: what we know, where we stand and what is likely to happen in the future?. Postepy Dermatologii I Alergologii, 2017, 1, 6-14.	0.4	18
33	Controlling enzymatic activity by immobilization on graphene oxide. Die Naturwissenschaften, 2017, 104, 36.	0.6	37
34	Comment on â€~ã€~Elucidating the binding efficacy of β-galactosidase on graphene by docking approach and its potential application in galacto-oligosaccharide production― Bioprocess and Biosystems Engineering, 2017, 40, 797-798.	1.7	0
35	Molecular simulation aided nanoporous carbon design for highly efficient low-concentrated formaldehyde capture. Carbon, 2017, 124, 152-160.	5.4	30
36	Water Adsorption Property of Hierarchically Nanoporous Detonation Nanodiamonds. Langmuir, 2017, 33, 11180-11188.	1.6	28

#	Article	IF	CITATIONS
37	Nanoscale Insight into the Mechanism of a Highly Oriented Pyrolytic Graphite Edge Surface Wetting by "Interferencing―Water. Langmuir, 2017, 33, 8562-8573.	1.6	4
38	CO2 - Reinforced nanoporous carbon potential energy field during CO2/CH4 mixture adsorption. A comprehensive volumetric, in-situ IR, and thermodynamic insight. Carbon, 2017, 122, 185-193.	5.4	5
39	Morphologically disordered pore model for characterization of micro-mesoporous carbons. Carbon, 2017, 111, 358-370.	5.4	25
40	To what extent can mutual shifting of folded carbonaceous walls in slit-like pores affect their adsorption properties?. Journal of Physics Condensed Matter, 2016, 28, 015002.	0.7	1
41	New findings on the influence of carbon surface curvature on energetics of benzene adsorption from gaseous phase. Chemical Physics Letters, 2016, 645, 157-163.	1.2	4
42	Facile preparation of copper nitride powders and nanostructured films. Journal of Materials Chemistry C, 2016, 4, 5031-5037.	2.7	21
43	Phenol adsorption on different nano-sized carbon materials: first comparative study. Adsorption, 2016, 22, 437-444.	1.4	4
44	The Chemistry of Bioconjugation in Nanoparticles-Based Drug Delivery System. Advances in Condensed Matter Physics, 2015, 2015, 1-27.	0.4	75
45	Conscious Changes of Carbon Nanotubes Cytotoxicity by Manipulation with Selected Nanofactors. Applied Biochemistry and Biotechnology, 2015, 176, 730-741.	1.4	12
46	New application of carbon nanotubes in haemostatic dressing filled with anticancer substance. Biomedicine and Pharmacotherapy, 2015, 69, 349-354.	2.5	10
47	Water at Curved Carbon Surface: Mechanisms of Adsorption Revealed by First Calorimetric Study. Journal of Physical Chemistry C, 2015, 119, 2703-2715.	1.5	10
48	Properties of Phenol Confined in Realistic Carbon Micropore Model: Experiment and Simulation. Journal of Physical Chemistry C, 2015, 119, 19987-19995.	1.5	14
49	New findings on the influence of carbon surface curvature on energetics of benzene adsorption from aqueous solutions. Chemical Physics Letters, 2015, 619, 219-222.	1.2	8
50	Nanovehicles as a novel target strategy for hyperthermic intraperitoneal chemotherapy: a multidisciplinary study of peritoneal carcinomatosis. Oncotarget, 2015, 6, 22776-22798.	0.8	18
51	Synthesis of carbon nanotubes and nanotube forests on copper catalyst. Materials Research Express, 2014, 1, 035040.	0.8	11
52	Mechanistic Aspects of N2O Decomposition Over Carbon Films and Carbon-Film-Supported Catalysts. Catalysis Letters, 2014, 144, 633-638.	1.4	9
53	Nanotube-mediated efficiency of cisplatin anticancer therapy. Carbon, 2014, 70, 46-58.	5.4	22
54	Carbon Molecular Sieves: Reconstruction of Atomistic Structural Models with Experimental Constraints. Journal of Physical Chemistry C, 2014, 118, 12996-13007.	1.5	21

#	Article	IF	CITATIONS
55	Carbon nanotubes as potential material for drug delivery—experiment and simulation. Adsorption, 2013, 19, 269-272.	1.4	5
56	Porosity of closed carbon nanotubes compressed using hydraulic pressure. Adsorption, 2013, 19, 785-793.	1.4	4
57	Carbon materials as new nanovehicles in hot-melt drug deposition. Journal of Physics Condensed Matter, 2013, 25, 355002.	0.7	9
58	Detecting adsorption space in carbon nanotubes by benzene uptake. Journal of Colloid and Interface Science, 2013, 391, 74-85.	5.0	13
59	The numerical analysis of the spherical carbon adsorbents obtained from ion-exchange resins in one-step steam pyrolysis. Applied Surface Science, 2012, 259, 13-20.	3.1	7
60	Thermodynamics of benzene adsorption on oxidized carbon nanotubes – experimental and simulation studies. Chemical Physics Letters, 2012, 538, 93-98.	1.2	20
61	Enhanced adsorption of paracetamol on closed carbon nanotubes by formation of nanoaggregates: Carbon nanotubes as potential materials in hot-melt drug deposition-experiment and simulation. Journal of Colloid and Interface Science, 2012, 376, 209-216.	5.0	19
62	Removal of internal caps during hydrothermal treatment of bamboo-like carbon nanotubes and application of tubes in phenol adsorption. Journal of Colloid and Interface Science, 2012, 381, 36-42.	5.0	30
63	The application of the fast multivariant fitting procedure of the LBET models to the analysis of carbon foams prepared by various methods from furfuryl alcohol. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 385, 72-84.	2.3	3
64	New phosphorus-containing spherical carbon adsorbents as promising materials in drug adsorption and release. Journal of Colloid and Interface Science, 2011, 354, 891-894.	5.0	30
65	Phenol adsorption on closed carbon nanotubes. Journal of Colloid and Interface Science, 2011, 361, 288-292.	5.0	23
66	Simple model of adsorption on external surface of carbon nanotubes—aÂnew analytical approach basing on molecular simulation data. Adsorption, 2010, 16, 197-213.	1.4	23
67	The system of carbon tetrachloride and closed carbon nanotubes analyzed by a combination of molecular simulations, analytical modeling, and adsorption calorimetry. Journal of Colloid and Interface Science, 2010, 349, 321-330.	5.0	6
68	Studies of the reactivity of carbon nanotubes towards selected alkali cations and chlorides based on the HSAB theory. Catalysis Today, 2010, 150, 147-150.	2.2	5
69	Experimental and theoretical estimations of the polar force contributions to the heat of immersion of carbon nanotubes. Chemical Physics Letters, 2010, 485, 331-334.	1.2	14
70	The HSAB principle as a means to interpret the reactivity of carbon nanotubes. Applied Surface Science, 2009, 255, 4782-4786.	3.1	11
71	Hydrothermal opening of multiwall carbon nanotube with H2O2 solution. Chemical Physics Letters, 2009, 482, 316-319.	1.2	16
72	Carbon surface chemical composition in para-nitrophenol adsorption determined under real oxic and anoxic conditions. Journal of Colloid and Interface Science, 2008, 320, 40-51.	5.0	12

#	Article	IF	CITATIONS
73	XPS and NMR studies of phosphoric acid activated carbons. Carbon, 2008, 46, 2113-2123.	5.4	743
74	One-Step Steam Pyrolysis Preparation and Characterization of Spherical Carbon Adsorbents Obtained from Ion-Exchange Resins. Adsorption Science and Technology, 2008, 26, 407-413.	1.5	1
75	Impact of the interaction with the positive charge in adsorption of benzene and other organic compounds from aqueous solutions on carbons. Applied Surface Science, 2007, 253, 4006-4009.	3.1	6
76	An infrared study of the behavior of SO2 and NOx over carbon and carbon-supported catalysts. Catalysis Today, 2007, 119, 213-218.	2.2	22
77	CO2 sorption on substituted carbon materials. Applied Surface Science, 2007, 253, 5726-5731.	3.1	29
78	Pearson's Hard-Soft Acid-Base Principle as a Means of Interpreting the Reactivity of Carbon Materials. Adsorption Science and Technology, 2006, 24, 389-402.	1.5	16
79	Catalytic CO2 reforming of methane over Ir/Ce0.9Gd0.1O2â^. Catalysis Communications, 2005, 6, 596-600.	1.6	89
80	Reduction of NO by H ₂ on Carbon Film Supported Ni Catalysts – in situ FTIR Study. Catalysis Letters, 2004, 94, 135-141.	1.4	5
81	Title is missing!. Catalysis Letters, 2003, 85, 189-191.	1.4	3
82	Heterogeneous reactions of NO2 and NO–O2 on the surface of carbons. Carbon, 2003, 41, 235-246.	5.4	75
83	In situ characterization of interaction of ammonia with carbon surface in oxygen atmosphere. Carbon, 2003, 41, 2257-2267.	5.4	92
84	Adsorption and catalytic reduction of NO with methanol over carbon and carbon-supported catalysts. Applied Catalysis B: Environmental, 2002, 35, 255-267.	10.8	11
85	13C NMR study of cellulose thermal treatment. Journal of Analytical and Applied Pyrolysis, 2002, 62, 111-121.	2.6	40
86	Carbon films as a model material in catalytic NH3/O2 reaction—in situ FTIR study. Fuel Processing Technology, 2002, 77-78, 389-394.	3.7	4
87	Adsorption and decomposition of NO on carbon and carbon-supported catalysts. Carbon, 2002, 40, 119-124.	5.4	28
88	Toward the Characterization of Microporosity of Carbonaceous Films. Journal of Colloid and Interface Science, 2001, 243, 183-192.	5.0	46
89	IR study of adsorption and decomposition of propan-2-ol on carbon and carbon-supported catalysts. Carbon, 2001, 39, 187-192.	5.4	44