Yannick Landais

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/884580/publications.pdf

Version: 2024-02-01

164 papers 5,277 citations

36 h-index 63 g-index

232 all docs 232 docs citations

times ranked

232

3677 citing authors

#	Article	IF	CITATIONS
1	Enantioselective Total Synthesis of (+)â€Eucophylline. Chemistry - A European Journal, 2022, 28, .	3.3	2
2	Oxamic acids: useful precursors of carbamoyl radicals. Chemical Communications, 2022, 58, 7593-7607.	4.1	19
3	Photocatalyzed decarboxylation of oxamic acids under near-infrared conditions. Chemical Communications, 2022, 58, 8802-8805.	4.1	9
4	The Tritylâ€Cation Mediated Phosphine Oxides Reduction. Advanced Synthesis and Catalysis, 2021, 363, 3035-3043.	4.3	16
5	Quinolineâ€Based Silylium Ions: Synthesis, Structure and Lewis Acidity. European Journal of Organic Chemistry, 2021, 2021, 3613-3621.	2.4	2
6	Direct and selective access to amino-poly(phenylene vinylenes)s with switchable properties by dimerizing polymerization of aminoaryl carbenes. Nature Communications, 2021, 12, 4093.	12.8	0
7	On the Origin of the Nonâ€planearity in Biarylsilyloxonium Ions. Chemistry - A European Journal, 2021, 27, 15496-15500.	3.3	4
8	Identification and analysis of new \hat{l}_{\pm} - and \hat{l}_{\pm} -hydroxy ketones related to the formation of 3-methyl-2,4-nonanedione in musts and red wines. Food Chemistry, 2020, 305, 125486.	8.2	9
9	<i>p</i> -Anisaldehyde-Photosensitized Sulfonylcyanation of Chiral Cyclobutenes: Enantioselective Access to Cyclic and Acyclic Systems Bearing All-Carbon Quaternary Stereocenters. Organic Letters, 2020, 22, 575-579.	4.6	14
10	Chiral Memory in Silyl-Pyridinium and Quinolinium Cations. Journal of the American Chemical Society, 2020, 142, 564-572.	13.7	25
11	Copper-catalyzed oxidative benzylic C(sp ³)â€"H amination: direct synthesis of benzylic carbamates. Chemical Communications, 2020, 56, 13013-13016.	4.1	27
12	Urethanes synthesis from oxamic acids under electrochemical conditions. Chemical Communications, 2020, 56, 12226-12229.	4.1	18
13	Chiral Chalcogenylâ€Substituted Naphthyl―and Acenaphthylâ€Silanes and Their Cations. Chemistry - A European Journal, 2020, 26, 16441-16449.	3.3	14
14	Vicinal difunctionalization of alkenes by four-component radical cascade reaction of xanthogenates, alkenes, CO, and sulfonyl oxime ethers. Beilstein Journal of Organic Chemistry, 2019, 15, 1822-1828.	2.2	1
15	Aryl Radicalâ€Mediated Alkenylation of Alkyl Halides. Helvetica Chimica Acta, 2019, 102, e1900140.	1.6	12
16	Visible-light mediated carbamoyl radical addition to heteroarenes. Chemical Communications, 2019, 55, 466-469.	4.1	45
17	Palladium-mediated domino oxidative amination of cyclohexadienes as an entry to indole alkaloids. Tetrahedron, 2019, 75, 561-569.	1.9	4
18	Dehydrogenative Silylation of Alcohols Under Pdâ€Nanoparticle Catalysis. Chemistry - A European Journal, 2019, 25, 728-732.	3.3	15

#	Article	IF	CITATIONS
19	An Approach towards the Synthesis of the Spiroimine Fragment of 13â€Desmethylspirolideâ€C and Gymnodimineâ€A. Chemistry - A European Journal, 2019, 25, 1553-1560.	3.3	6
20	Boronic Acid Mediated Carbocyanation of Olefins and Vinylation of Alkyl Iodides. European Journal of Organic Chemistry, 2018, 2018, 4058-4063.	2.4	7
21	Thirty Years of (TMS) ₃ SiH: A Milestone in Radical-Based Synthetic Chemistry. Chemical Reviews, 2018, 118, 6516-6572.	47.7	207
22	Visible-light photocatalyzed oxidative decarboxylation of oxamic acids: a green route to urethanes and ureas. Chemical Communications, 2018, 54, 9337-9340.	4.1	39
23	Poly(arylene vinylene) Synthesis via a Precursor Step-Growth Polymerization Route Involving the Ramberg–BÃeklund Reaction as a Key Post-Chemical Modification Step. Macromolecules, 2018, 51, 5852-5862.	4.8	9
24	Eosin-Mediated Alkylsulfonyl Cyanation of Olefins. Organic Letters, 2018, 20, 4521-4525.	4.6	30
25	Oxidation of 1-Arylcyclohexa-2,5-dienes and Subsequent Double Michael Addition. A Rapid Access to the $B\tilde{A}^1\!\!/4$ chi Ketone and the Pentacyclic Core of Aspidosperma Alkaloids. Heterocycles, 2018, 97, 459.	0.7	6
26	Acyl Radical Addition to Activated Olefins: A Stereocontrolled Route to Polysubstituted Tetrahydrofurans and Lactones, and Application to the Total Synthesis of (+)â€No. 2106 A. European Journal of Organic Chemistry, 2017, 2017, 1323-1330.	2.4	7
27	Freeâ€Radical Carbocyanation of Olefins. Chemistry - A European Journal, 2017, 23, 4651-4658.	3.3	21
28	Organic Lewis Pairs Based on Phosphine and Electrophilic Silane for the Direct and Controlled Polymerization of Methyl Methacrylate: Experimental and Theoretical Investigations. Macromolecules, 2017, 50, 762-774.	4.8	39
29	Acyl Radical Addition onto Azaâ€Baylisâ€"Hillman Adducts: A Stereocontrolled Access to 2,3,5â€Trisubstituted Pyrrolidines. Advanced Synthesis and Catalysis, 2017, 359, 2434-2441.	4.3	12
30	Freeâ€Radical Carboâ€Alkenylation of Olefins: Scope, Limitations and Mechanistic Insights. Chemistry - A European Journal, 2017, 23, 2439-2447.	3.3	36
31	A Unified Strategy Toward 5â€, 6â€, and 7â€Membered Nitrogen Heterocycles Through Free Radical then Metalâ€Mediated Functionalization of Eneâ€carbamates. Advanced Synthesis and Catalysis, 2017, 359, 3217-3225.	4.3	4
32	Visible-Light-Mediated Addition of Phenacyl Bromides onto Cyclopropenes. Organic Letters, 2017, 19, 3652-3655.	4.6	22
33	Arylsilanes as Precursors of Cyclohexa-2,5-dienylsilanes. , 2016, , 1-4.		0
34	Rhodium-Catalyzed Vinyldiazoesters Insertion Into Si H Bonds. Synthesis of Allylsilanes., 2016,, 5-8.		0
35	Lewis Base–Stabilized Silyliums. , 2016, , 9-11.		0
36	Free-Radical Carbocyanation of Cyclopropenes: Stereocontrolled Access to All-Carbon Quaternary Stereocenters in Acyclic Systems. Organic Letters, 2016, 18, 6156-6159.	4.6	29

#	Article	IF	Citations
37	Stereocontrolled (Me ₃ Si) ₃ SiH-Mediated Radical and Ionic Hydride Transfer in Synthesis of 2,3,5-Trisubstituted THF. Organic Letters, 2016, 18, 1542-1545.	4.6	16
38	Free-radical Carbo-functionalization of Olefins Using Sulfonyl Derivatives. Chimia, 2016, 70, 34.	0.6	18
39	Chiral Memory in Silylium Ions. Chemistry - A European Journal, 2015, 21, 11573-11578.	3.3	31
40	From the Nâ€Heterocyclic Carbene atalyzed Conjugate Addition of Alcohols to the Controlled Polymerization of (Meth)acrylates. Chemistry - A European Journal, 2015, 21, 9447-9453.	3.3	23
41	Synthesis of New Sulfonyloximes and Their Use in Free-Radical Olefin Carbo-oximation. Organic Letters, 2015, 17, 1958-1961.	4.6	14
42	Total Synthesis of $(\hat{A}\pm)$ -Eucophylline. A Free-Radical Approach to the Synthesis of the Azabicyclo[3.3.1]nonane Skeleton. Organic Letters, 2015, 17, 4518-4521.	4.6	32
43	Structure, Biological Properties, and Total Synthesis of Polyhydroxylated Pyrrolizidines of the Hyacinthacines Family. Studies in Natural Products Chemistry, 2014, , 373-419.	1.8	9
44	Baseâ€Catalyzed Intramolecular Hydroamination of Cyclohexaâ€2,5â€dienes: Insights into the Mechanism through DFT Calculations and Application to the Total Synthesis of ⟨i⟩epi⟨/i⟩â€Elwesine. Chemistry - A European Journal, 2014, 20, 14771-14782.	3.3	13
45	Cyclodimerization versus Polymerization of Methyl Methacrylate Induced by ⟨i⟩N⟨ i⟩â€Heterocyclic Carbenes: A Combined Experimental and Theoretical Study. Chemistry - A European Journal, 2014, 20, 3989-3997.	3.3	37
46	Polyaldol Synthesis by Direct Organocatalyzed Crossed Polymerization of Bis(ketones) and Bis(aldehydes). Macromolecules, 2014, 47, 525-533.	4.8	16
47	Novel green fatty acid-based bis-cyclic carbonates for the synthesis of isocyanate-free poly(hydroxyurethane amide)s. RSC Advances, 2014, 4, 25795-25803.	3.6	94
48	Organocatalyzed Stepâ€Growth Polymerization through Desymmetrization of Cyclic Anhydrides: Synthesis of Chiral Polyesters. Chemistry - A European Journal, 2014, 20, 11946-11953.	3.3	6
49	4.12 Radical Addition Reactions. , 2014, , 699-741.		15
50	One-Pot Synthesis and PEGylation of Hyperbranched Polyacetals with a Degree of Branching of 100%. Macromolecules, 2014, 47, 1532-1542.	4.8	34
51	Synthesis of the C10–C24â€Bisâ€Spiroacetal Core of 13â€Desmethyl Spirolide C Based on a Silaâ€Stetterâ€Acetalization Process. Chemistry - A European Journal, 2014, 20, 9336-9341.	3.3	14
52	Unexpected ring contraction of 1-aryl-cyclohexa-2,5-dienes under palladium catalysis. Arkivoc, 2014, 2014, 6-17.	0.5	1
53	Convergent Access to Bis-spiroacetals through a Sila-Stetter–Ketalization Cascade. Organic Letters, 2013, 15, 4706-4709.	4.6	26
54	Free-radical carbo-oximation of olefins and subsequent radical-ionic cascades. Tetrahedron, 2013, 69, 10073-10080.	1.9	22

#	Article	IF	CITATIONS
55	Organocatalyzed Aldol Reaction between Pyridineâ€2â€carbaldehydes and αâ€Ketoacids: A Straightforward Route towards Indolizidines and Isotetronic Acids. Chemistry - A European Journal, 2013, 19, 14532-14539.	3.3	18
56	CF Bond Formation: A Freeâ€Radical Approach. Angewandte Chemie - International Edition, 2013, 52, 3570-3572.	13.8	99
57	On the chemical fixation of supercritical carbon dioxide with epoxides catalyzed by ionic salts: an in situ FTIR and Raman study. Catalysis Science and Technology, 2013, 3, 1046.	4.1	62
58	Latent catalysts based on guanidine templates for polyurethane synthesis. Polymer Chemistry, 2013, 4, 904.	3.9	19
59	Free-Radical Carbo-alkenylation of Enamides and Ene-carbamates. Organic Letters, 2013, 15, 2814-2817.	4.6	43
60	Twofold Carbon–Carbon Bond Formation by Intra―and Intermolecular Radical Reactions of Aryl Diazonium Salts. Chemistry - A European Journal, 2013, 19, 8411-8416.	3.3	34
61	Development of Domino Processes by Using 7â€Silylcycloheptatrienes and Its Analogues. Chemistry - A European Journal, 2012, 18, 11976-11986.	3.3	14
62	Cyclic Guanidines as Efficient Organocatalysts for the Synthesis of Polyurethanes. Macromolecules, 2012, 45, 2249-2256.	4.8	66
63	Silylboranes as New Sources of Silyl Radicals for Chainâ€Transfer Reactions. Chemistry - A European Journal, 2012, 18, 940-950.	3.3	13
64	An Approach Toward Homocalystegines and Silyl-homocalystegines. Acid-Mediated Migrations of Acetates in Seven-Membered Ring Systems. Journal of Organic Chemistry, 2011, 76, 791-799.	3.2	13
65	Free-Radical Carboalkynylation and Carboalkenylation of Olefins. Organic Letters, 2011, 13, 2658-2661.	4.6	67
66	Synthesis of the gymnodimine tetrahydrofuran core through a Ueno–Stork radical cyclization. Organic and Biomolecular Chemistry, 2011, 9, 3726.	2.8	10
67	Allylsilanes in "Tinâ€free―Oximation, Alkenylation, and Allylation of Alkyl Halides. Chemistry - A European Journal, 2011, 17, 13904-13911.	3.3	35
68	Medium-ring aminocyclitols: a concise synthesis of nine-membered aminocarbasugar analogs and the solid-state supramolecular architectures of two key precursors. Tetrahedron Letters, 2011, 52, 2893-2897.	1.4	18
69	Synthesis of (1-Allylcyclohexa-2,5-dienyl)arenes. Synthesis, 2010, 2010, 1223-1228.	2.3	2
70	Desymmetrization of 7-dimethylphenylsilylcycloheptatriene. Towards the synthesis of new aminocycloheptitols. Organic and Biomolecular Chemistry, 2010, 8, 5628.	2.8	14
71	Fragmentation of \hat{l}^2 -Silyl Radicals. A Computational Study. Organometallics, 2010, 29, 2406-2412.	2.3	4
72	Straightforward Assembly of the Octahydroisoquinoline Core of Morphinan Alkaloids. Organic Letters, 2010, 12, 2178-2181.	4.6	5

#	Article	IF	Citations
73	Identification of a Sotolon Pathway in Dry White Wines. Journal of Agricultural and Food Chemistry, 2010, 58, 7273-7279.	5.2	61
74	Synthesis of Piperidinones through a Radical Cascade. Synthesis, 2009, 2009, 2646-2649.	2.3	3
75	Radical and Radical–lonic Multicomponent Processes. Chemistry - A European Journal, 2009, 15, 3044-3055.	3.3	173
76	Functionalization and Rearrangement of Spirocyclohexadienyl Oxindoles: Experimental and Theoretical Investigations. Chemistry - A European Journal, 2009, 15, 11160-11173.	3.3	27
77	Birch Reductive Alkylation of Biaryls: Scope and Limitations. Journal of Organic Chemistry, 2009, 74, 6469-6478.	3.2	20
78	Carboazidation of Chiral Allylsilanes: Experimental and Theoretical Investigations. Chemistry - A European Journal, 2008, 14, 2744-2756.	3.3	28
79	7-Silylcycloheptatrienes and Analogues: Reactivity and Selectivity in Cascade Processes. Organic Letters, 2008, 10, 4195-4198.	4.6	14
80	Rearrangement of Spirocyclic Oxindoles with Lithium Amide Bases. Organic Letters, 2008, 10, 4441-4444.	4.6	22
81	Distribution and Organoleptic Impact of Sotolon Enantiomers in Dry White Wines. Journal of Agricultural and Food Chemistry, 2008, 56, 1606-1610.	5.2	38
82	Synthesis of Fused Piperidinones through a Radical-Ionic Cascade. Journal of Organic Chemistry, 2008, 73, 6983-6993.	3.2	32
83	Diastereoselective Radical Cyclization Towards Piperidinones. Synfacts, 2008, 2008, 1306-1306.	0.0	1
84	A concise organocatalytic and enantioselective synthesis of isotetronic acids. Chemical Communications, 2007, , 4782.	4.1	47
85	Multicomponent Radical Processes:  Synthesis of Substituted Piperidinones. Journal of the American Chemical Society, 2007, 129, 12662-12663.	13.7	60
86	Efficient Synthetic Approaches to the Common Scaffold of Indole Alkaloids. Organic Letters, 2007, 9, 3913-3916.	4.6	33
87	Benzimidazole-pyrrolidine/H+ (BIP/H+), a Highly Reactive Organocatalyst for Asymmetric Processes. European Journal of Organic Chemistry, 2007, 2007, 167-177.	2.4	70
88	Photolabile arylsilyl group: application to the oxidation of C–Si bonds. Tetrahedron Letters, 2007, 48, 8909-8913.	1.4	6
89	Theoretical Study of Free-Radical-Mediated 5-exo-Trig Cyclizations of Chiral 3-Substituted Hepta-1,6-dienes. Journal of Physical Chemistry A, 2006, 110, 3714-3722.	2.5	8
90	Desymmetrization of Cyclohexa-2,5-dienes through a Diastereoselective Protonationâ [^] 'Hydroamination Cascade. Organic Letters, 2006, 8, 4755-4758.	4.6	57

#	Article	IF	CITATIONS
91	A Stereocontrolled Access to Ring-Fused Piperidines through a Formal [2+2+2] Process. Organic Letters, 2006, 8, 4871-4874.	4.6	25
92	Radical-Mediated 5-Exo-TrigCyclizations of 3-Silylhepta-1,6-dienes. Journal of Organic Chemistry, 2006, 71, 3630-3633.	3.2	32
93	Free-Radical-5-exo-Trig Cyclization of Chiral 3-Silylhepta-1,6-dienes: Concise Approach to the A—B—C Ring Core of Hexacyclinic Acid ChemInform, 2006, 37, no.	0.0	O
94	Oxidative cleavage of C–Si bonds in polyhydroxylated silacyclopentanes. Tetrahedron Letters, 2005, 46, 675-679.	1.4	6
95	Stereocontrol in reactions of cyclic and acyclic \hat{l}^2 -silyl radicals. Comptes Rendus Chimie, 2005, 8, 823-832.	0.5	5
96	New Polymer-Supported Organosilicon Reagents. European Journal of Organic Chemistry, 2005, 2005, 3900-3910.	2.4	11
97	Enantioselective Synthesis of Functionalized ?-Butyrolactones ChemInform, 2005, 36, no.	0.0	0
98	Benzoimidazoleâ€"Pyrrolidine (BIP), a Highly Reactive Chiral Organocatalyst for Aldol Process Chemlnform, 2005, 36, no.	0.0	2
99	Diastereoselective Synthesis of Functionalized ?-Lactones ChemInform, 2005, 36, no.	0.0	0
100	Oxidative Cleavage of C?Si Bonds in Polyhydroxylated Silacyclopentanes ChemInform, 2005, 36, no.	0.0	0
101	Practical Pd/C-Mediated Allylic Substitution in Water ChemInform, 2005, 36, no.	0.0	0
102	Total Synthesis of Hyacinthacine Aland 3-epi-Hyacinthacine Al. Organic Letters, 2005, 7, 2587-2590.	4.6	101
103	Practical Pd/C-Mediated Allylic Substitution in Water. Journal of Organic Chemistry, 2005, 70, 6441-6446.	3.2	105
104	Free-Radical-5-exo-Trig Cyclization of Chiral 3-Silylhepta-1,6-dienes: Concise Approach to the Aâ^'Bâ^'C Ring Core of Hexacyclinic Acidâ€. Journal of Organic Chemistry, 2005, 70, 7985-7995.	3.2	29
105	Regioselectivity of Birch Reductive Alkylation of Biarylsâ€. Organic Letters, 2005, 7, 4557-4560.	4.6	34
106	Enantioselective synthesis of functionalized \hat{I}^3 -butyrolactones. Tetrahedron, 2004, 60, 8949-8956.	1.9	17
107	Allylsilanes in Organic Synthesis â^' Recent Developments. European Journal of Organic Chemistry, 2004, 2004, 3173-3199.	2.4	242
108	Multinuclear magnetic resonance and molecular modeling investigations as unambiguous methods for the determination of silacycle 3D structures. Magnetic Resonance in Chemistry, 2004, 42, 467-473.	1.9	3

#	Article	IF	CITATIONS
109	Free-Radical Functionalization of Vinylcyclopropanes ChemInform, 2004, 35, no.	0.0	O
110	Allylsilanes in Organic Synthesis â€" Recent Developments. ChemInform, 2004, 35, no.	0.0	0
111	Radical Amination with Sulfonyl Azides: A Powerful Method for the Formation of CN Bonds. Chemistry - A European Journal, 2004, 10, 3606-3614.	3.3	93
112	First synthesis of (\hat{A}_{\pm}) -bis-homosarkomycin ethyl ester. Tetrahedron Letters, 2004, 45, 2049-2050.	1.4	7
113	Benzoimidazole–pyrrolidine (BIP), a highly reactive chiral organocatalyst for aldol process. Tetrahedron Letters, 2004, 45, 8035-8038.	1.4	60
114	Diastereoselective Synthesis of Functionalized δâ€Lactones. Synthetic Communications, 2004, 34, 3707-3717.	2.1	3
115	Remarkable Effect of a Silicon Group on the Stereoselectivity of Radical 5-exo-Trig Cyclizations. Organic Letters, 2004, 6, 325-328.	4.6	17
116	Free-radical functionalisation of vinylcyclopropanes. Tetrahedron, 2003, 59, 8543-8550.	1.9	17
117	Desymmetrisation of Cyclopentadienylsilane by Asymmetric Cyclopropanation. European Journal of Organic Chemistry, 2003, 2003, 1069-1073.	2.4	18
118	Stereoselective Intermolecular Carboazidation of Chiral Allylsilanes ChemInform, 2003, 34, no.	0.0	0
119	Desymmetrisation of Cyclic Dienes. An Efficient Strategy for Natural Products Synthesis. ChemInform, 2003, 34, no.	0.0	0
120	A New Synthesis and Stereocontrolled Functionalization of Substituted Silacyclopent-3-enes ChemInform, 2003, 34, no.	0.0	0
121	On the Stereochemistry of Î ² -Elimination of Î ² -Silyl Azides ChemInform, 2003, 34, no.	0.0	0
122	On the stereochemistry of Î ² -elimination of Î ² -silyl azides. Tetrahedron Letters, 2003, 44, 6995-6998.	1.4	16
123	A New Synthesis and Stereocontrolled Functionalization of Substituted Silacyclopent-3-enesâ€. Journal of Organic Chemistry, 2003, 68, 2779-2789.	3.2	27
124	Stereoselective Intermolecular Carboazidation of Chiral Allylsilanes. Organic Letters, 2002, 4, 4257-4260.	4.6	48
125	The preparation of polymer beads by photocationic suspension co-polymerisation of 2-(arylsilyl)ethyl vinyl ethers. Journal of the Chemical Society, Perkin Transactions 1, 2002, , 2198-2203.	1.3	6
126	Desymmetrization of Cyclohexa-1,4-dienes â^' A Straightforward Route to Cyclic and Acyclic Polyhydroxylated Systems. European Journal of Organic Chemistry, 2002, 2002, 4037-4053.	2.4	26

#	Article	IF	CITATIONS
127	Desymmetrisation of Cyclic Dienes. An Efficient Strategy for Natural Products Synthesis. Current Organic Chemistry, 2002, 6, 1369-1395.	1.6	39
128	Desymmetrisation and ring opening of cyclohexa-1,4-dienes. An access to highly functionalised cyclic and acyclic systems. Tetrahedron Letters, 2001, 42, 6547-6551.	1.4	13
129	A new regio- and stereocontrolled access to functionalised silacyclopent-3-enes. Tetrahedron Letters, 2001, 42, 581-584.	1.4	13
130	Studies on the Mercury-Desilylation of Chiral Cyclopropylmethylsilanes - A Stereocontrolled Access to Carba-Sugars. European Journal of Organic Chemistry, 2000, 2000, 401-418.	2.4	20
131	The Phenylthiocyclopropylsilyl Group: a Useful Latent Hydroxy Group. Tetrahedron, 2000, 56, 2025-2036.	1.9	14
132	Desymmetrization of Cyclohexadienylsilanes. Regio-, Diastereo-, and Enantioselective Access to Sugar Mimics. Journal of Organic Chemistry, 1999, 64, 9613-9624.	3.2	80
133	A Stereospecific Access to Allylic Systems Using Rhodium(II)â^'Vinyl Carbenoid Insertion into Siâ^'H, Oâ^'H, and Nâ^'H Bonds. Journal of Organic Chemistry, 1997, 62, 1630-1641.	3.2	116
134	Preparation of optically active \hat{l}_{\pm} -silylcarbonyl compounds using asymmetric alkylation of \hat{l}_{\pm} -silylacetic esters and asymmetric metal-carbene insertion into the Siî—,H bond. Tetrahedron, 1997, 53, 2855-2870.	1.9	42
135	Electrophilic 5-endo-trig cyclisations of 2-silyl-3-alkenols. A stereoselective route to polysubstituted tetrahydrofurans. Tetrahedron, 1997, 53, 4339-4352.	1.9	40
136	Synthesis of pseudo-sugars based on desymmetrization of dienylsilanes. Tetrahedron Letters, 1997, 38, 8841-8844.	1.4	33
137	1,3-Asymmetric induction in electrophilic addition onto homoallylsilanes. An approach towards the total synthesis of $(+/\hat{a}^{2})$ -kumausyne. Tetrahedron, 1997, 53, 2835-2854.	1.9	49
138	Mechanism of metal-carbenoid insertion into the Siî—,H bond. Tetrahedron Letters, 1997, 38, 229-232.	1.4	49
139	Radical deuteration of \hat{l} ±-selenylated- \hat{l} 2-silylsulfoxides. Tetrahedron Letters, 1997, 38, 233-236.	1.4	14
140	Asymmetric amino-hydroxylation of dienylsilanes. An efficient route to amino-cyclitols. Tetrahedron Letters, 1997, 38, 1407-1410.	1.4	38
141	Stereocontrolled access to Carba-C-disaccharides via functionalized dienylsilanes. Tetrahedron Letters, 1997, 38, 8845-8848.	1.4	27
142	Desymmetrization of a Silyl-2,5-cyclohexadiene. Synthesis of (+)-Conduritol E and (â^²)-2-Deoxy-allo-inositol. Journal of Organic Chemistry, 1996, 61, 5202-5203.	3.2	37
143	Diastereoselectivity in the SE2? reaction of chiral pentadienylsilanes: a test for the relative importance of steric and electronic effects. Journal of the Chemical Society Perkin Transactions 1 , 1996 , 1171 .	0.9	14
144	Epoxidation and cyclopropanation of 2-silyl-3-alkenols. A study of 1,2-asymmetric induction. Tetrahedron Letters, 1996, 37, 1205-1208.	1.4	28

#	Article	IF	CITATIONS
145	Mercuri-desilylation of chiral cyclopropylmethylsilanes. Tetrahedron Letters, 1996, 37, 1209-1212.	1.4	22
146	The oxidation of the carbon-silicon bond. Tetrahedron, 1996, 52, 7599-7662.	1.9	588
147	Synthesis of α-(Alkoxysilyl)acetic esters. A route to 1,2 diols. Tetrahedron, 1995, 51, 12083-12096.	1.9	42
148	Radical allylation of î±-silylacetic esters. Tetrahedron, 1995, 51, 12097-12108.	1.9	16
149	Stereoselective synthesis of substituted tetrahydrofurans via selenoetherification of 2-silyl-3-alkenols. A study of allylic stereocontrol. Tetrahedron Letters, 1995, 36, 2987-2990.	1.4	45
150	The dimethyl(1-phenylthio)cyclopropylsilyl group as a masked hydroxyl group. Tetrahedron Letters, 1995, 36, 3861-3864.	1.4	13
151	Electronic versus Steric Effects in 5-endo-trig-like Electrophilic Cyclizations. Synlett, 1995, 1995, 1191-1193.	1.8	20
152	Asymmetric metal carbene insertion into the Siî—,H bond. Tetrahedron Letters, 1994, 35, 4565-4568.	1.4	53
153	Ruthenium dioxide in fluoro acid medium V. Application to the non phenolic oxidative coupling of diarylbutanes. Conformational studies of and deoxyschizandrins Tetrahedron, 1994, 50, 1153-1164.	1.9	28
154	Enantioselective aldol reactions using homochiral lithium amides as non-covalently bound chiral auxiliaries Tetrahedron: Asymmetry, 1994, 5, 541-544.	1.8	9
155	Rhodium(II)-vinylcarbenoid insertion into the Siî—,H bond. A new stereospecific synthesis of allylsilanes. Tetrahedron Letters, 1994, 35, 9549-9552.	1.4	64
156	A one pot synthesis of α-(alkoxysilyl)acetic esters. Tetrahedron Letters, 1993, 34, 2927-2930.	1.4	49
157	Highly stereoselective access to 2,4- and 2,4,5-substituted tetrahydrofurans from \hat{l}_{\pm} -silylacetic esters. A study of homoallylic stereocontrol Tetrahedron Letters, 1993, 34, 8435-8438.	1.4	25
158	Ruthenium dioxide in fluoro acid medium: II. Application to the formation of steganes skeleton by oxidative phenolic coupling Tetrahedron, 1992, 48, 819-830.	1.9	23
159	Ruthenium dioxide in fluoro acid medium III. Application to the synthesis of aporphinic, homoaporphinic and dibenzazocinic alkaloids. Studies towards the preparation of azafluoranthenic skeleton Tetrahedron, 1992, 48, 7185-7196.	1.9	31
160	Ruthenium dioxide in fluoro acid medium: I. A new agent in the biaryl oxidative coupling. Application to the synthesis of non phenolic bisbenzocyclooctadiene lignan lactones Tetrahedron, 1991, 47, 3787-3804.	1.9	50
161	Ruthenium(IV) dioxide in fluoro acid medium. An efficient biaryl phenol coupling process, exemplified with a biomimetic access to the skeleton of steganacin from presteganes. Journal of Organic Chemistry, 1988, 53, 224-226.	3.2	36
162	Ruthenium(IV) (trifluoroacetate), a new oxidizing agent. III. An efficient access to the aporphine and homoaporphine skeletons and their structural studies Tetrahedron Letters, 1987, 28, 543-546.	1.4	32

YANNICK LANDAIS

#	Article	IF	CITATIONS
163	Synthesis of diarylbutanes from cordigerines and reinvestigation of their oxidative couplings in deoxyschizandrins An unusual formation of phenyltetralin lignans Tetrahedron Letters, 1987, 28, 5161-5164.	1.4	33
164	Ruthenium(IV) (trifluoroacetate), a new oxidizing agent. II. A new access to schizandrins skeleton using biaryl oxidative coupling of -substituted butanolides. Tetrahedron Letters, 1986, 27, 5377-5380.	1.4	22