Matthew L Holding

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8845516/publications.pdf

Version: 2024-02-01

567281 610901 31 644 15 24 citations h-index g-index papers 627 32 32 32 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Genetic characterization of potential venom resistance proteins in California ground squirrels (<i>Otospermophilus beecheyi</i>) using transcriptome analyses. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2023, 340, 259-269.	1.3	2
2	Venom Gene Sequence Diversity and Expression Jointly Shape Diet Adaptation in Pitvipers. Molecular Biology and Evolution, 2022, 39, .	8.9	8
3	Trioâ€binned genomes of the woodrats <i>Neotoma bryanti</i> and <i>Neotoma lepida</i> reveal novel gene islands and rapid copy number evolution of xenobiotic metabolizing genes. Molecular Ecology Resources, 2022, 22, 2713-2731.	4.8	13
4	The roles of balancing selection and recombination in the evolution of rattlesnake venom. Nature Ecology and Evolution, 2022, 6, 1367-1380.	7.8	13
5	The scales of coevolution: comparative phylogeography and genetic demography of a locally adapted venomous predator and its prey. Biological Journal of the Linnean Society, 2021, 132, 297-317.	1.6	8
6	Phylogenetically diverse diets favor more complex venoms in North American pitvipers. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	48
7	Phenotypic and functional variation in venom and venom resistance of two sympatric rattlesnakes and their prey. Journal of Evolutionary Biology, 2021, 34, 1447-1465.	1.7	14
8	Deep mutational scanning of the plasminogen activator inhibitor-1 functional landscape. Scientific Reports, 2021, 11, 18827.	3.3	8
9	Experimental Manipulation of Corticosterone Does Not Affect Venom Composition or Functional Activity in Free-Ranging Rattlesnakes. Physiological and Biochemical Zoology, 2021, 94, 286-301.	1.5	O
10	Individual Variability in Bothrops atrox Snakes Collected from Different Habitats in the Brazilian Amazon: New Findings on Venom Composition and Functionality. Toxins, 2021, 13, 814.	3.4	11
11	Gradual and Discrete Ontogenetic Shifts in Rattlesnake Venom Composition and Assessment of Hormonal and Ecological Correlates. Toxins, 2020, 12, 659.	3.4	7
12	Size Matters: An Evaluation of the Molecular Basis of Ontogenetic Modifications in the Composition of Bothrops jararacussu Snake Venom. Toxins, 2020, 12, 791.	3.4	18
13	Physiological Stress Integrates Resistance to Rattlesnake Venom and the Onset of Risky Foraging in California Ground Squirrels. Toxins, 2020, 12, 617.	3.4	9
14	The molecular basis of venom resistance in a rattlesnakeâ€squirrel predatorâ€prey system. Molecular Ecology, 2020, 29, 2871-2888.	3.9	23
15	Intraspecific sequence and gene expression variation contribute little to venom diversity in sidewinder rattlesnakes (<i>Crotalus cerastes</i>). Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20190810.	2.6	16
16	Serum-based inhibition of pitviper Venom by Eastern Indigo Snakes (<i>Drymarchon couperi</i>). Biology Open, 2019, 8, .	1.2	7
17	The importance of historical land use in the maintenance of early successional habitat for a threatened rattlesnake. Global Ecology and Conservation, 2018, 13, e00370.	2.1	10
18	Comparative venom-gland transcriptomics and venom proteomics of four Sidewinder Rattlesnake (Crotalus cerastes) lineages reveal little differential expression despite individual variation. Scientific Reports, 2018, 8, 15534.	3.3	41

#	Article	IF	CITATIONS
19	Local prey community composition and genetic distance predict venom divergence among populations of the northern Pacific rattlesnake (<i>Crotalus oreganus</i>). Journal of Evolutionary Biology, 2018, 31, 1513-1528.	1.7	29
20	Evaluating the Performance of De Novo Assembly Methods for Venom-Gland Transcriptomics. Toxins, 2018, 10, 249.	3.4	54
21	Good vibrations: Assessing the stability of snake venom composition after researcher-induced disturbance in the laboratory. Toxicon, 2017, 133, 127-135.	1.6	6
22	No safety in the trees: Local and species-level adaptation of an arboreal squirrel to the venom of sympatric rattlesnakes. Toxicon, 2016, 118, 149-155.	1.6	19
23	Coevolution of venom function and venom resistance in a rattlesnake predator and its squirrel prey. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20152841.	2.6	94
24	Venom Resistance as a Model for Understanding the Molecular Basis of Complex Coevolutionary Adaptations. Integrative and Comparative Biology, 2016, 56, 1032-1043.	2.0	46
25	Fixed prey cue preferences among Dusky Pigmy Rattlesnakes (Sistrurus miliarius barbouri) raised on different long-term diets. Evolutionary Ecology, 2016, 30, 1-7.	1.2	17
26	Confronting Scientific Misconceptions by Fostering a Classroom of Scientists in the Introductory Biology Lab. American Biology Teacher, 2014, 76, 518-523.	0.2	0
27	Wet- and Dry-Season Steroid Hormone Profiles and Stress Reactivity of an Insular Dwarf Snake, the Hog Island Boa (<i>Boa constrictor imperator</i>). Physiological and Biochemical Zoology, 2014, 87, 363-373.	1.5	19
28	Evaluating the thermal effects of translocation in a largeâ€bodied pitviper. Journal of Experimental Zoology, 2014, 321, 442-449.	1.2	2
29	Physiological and Behavioral Effects of Repeated Handling and Short-Distance Translocations on Free-Ranging Northern Pacific Rattlesnakes (<i>Crotalus oreganus oreganus</i>). Journal of Herpetology, 2014, 48, 233-239.	0.5	32
30	Roads are associated with a blunted stress response in a North American pit viper. General and Comparative Endocrinology, 2014, 202, 87-92.	1.8	29
31	Experimentally Altered Navigational Demands Induce Changes in the Cortical Forebrain of Free-Ranging Northern Pacific Rattlesnakes & lt; i> (Crotalus o. oreganus) & lt; li>. Brain, Behavior and Evolution, 2012, 79, 144-154.	1.7	39