
Matthew L Holding

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8845516/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Coevolution of venom function and venom resistance in a rattlesnake predator and its squirrel prey. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20152841.	2.6	94
2	Evaluating the Performance of De Novo Assembly Methods for Venom-Gland Transcriptomics. Toxins, 2018, 10, 249.	3.4	54
3	Phylogenetically diverse diets favor more complex venoms in North American pitvipers. Proceedings of the United States of America, 2021, 118, .	7.1	48
4	Venom Resistance as a Model for Understanding the Molecular Basis of Complex Coevolutionary Adaptations. Integrative and Comparative Biology, 2016, 56, 1032-1043.	2.0	46
5	Comparative venom-gland transcriptomics and venom proteomics of four Sidewinder Rattlesnake (Crotalus cerastes) lineages reveal little differential expression despite individual variation. Scientific Reports, 2018, 8, 15534.	3.3	41
6	Experimentally Altered Navigational Demands Induce Changes in the Cortical Forebrain of Free-Ranging Northern Pacific Rattlesnakes <i>(Crotalus o. oreganus)</i> . Brain, Behavior and Evolution, 2012, 79, 144-154.	1.7	39
7	Physiological and Behavioral Effects of Repeated Handling and Short-Distance Translocations on Free-Ranging Northern Pacific Rattlesnakes (<i>Crotalus oreganus oreganus</i>). Journal of Herpetology, 2014, 48, 233-239.	0.5	32
8	Roads are associated with a blunted stress response in a North American pit viper. General and Comparative Endocrinology, 2014, 202, 87-92.	1.8	29
9	Local prey community composition and genetic distance predict venom divergence among populations of the northern Pacific rattlesnake (<i>Crotalus oreganus</i>). Journal of Evolutionary Biology, 2018, 31, 1513-1528.	1.7	29
10	The molecular basis of venom resistance in a rattlesnakeâ€squirrel predatorâ€prey system. Molecular Ecology, 2020, 29, 2871-2888.	3.9	23
11	Wet- and Dry-Season Steroid Hormone Profiles and Stress Reactivity of an Insular Dwarf Snake, the Hog Island Boa (<i>Boa constrictor imperator</i>). Physiological and Biochemical Zoology, 2014, 87, 363-373.	1.5	19
12	No safety in the trees: Local and species-level adaptation of an arboreal squirrel to the venom of sympatric rattlesnakes. Toxicon, 2016, 118, 149-155.	1.6	19
13	Size Matters: An Evaluation of the Molecular Basis of Ontogenetic Modifications in the Composition of Bothrops jararacussu Snake Venom. Toxins, 2020, 12, 791.	3.4	18
14	Fixed prey cue preferences among Dusky Pigmy Rattlesnakes (Sistrurus miliarius barbouri) raised on different long-term diets. Evolutionary Ecology, 2016, 30, 1-7.	1.2	17
15	Intraspecific sequence and gene expression variation contribute little to venom diversity in sidewinder rattlesnakes (<i>Crotalus cerastes</i>). Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20190810.	2.6	16
16	Phenotypic and functional variation in venom and venom resistance of two sympatric rattlesnakes and their prey. Journal of Evolutionary Biology, 2021, 34, 1447-1465.	1.7	14
17	Trioâ€binned genomes of the woodrats <i>Neotoma bryanti</i> and <i>Neotoma lepida</i> reveal novel gene islands and rapid copy number evolution of xenobiotic metabolizing genes. Molecular Ecology Resources, 2022, 22, 2713-2731.	4.8	13
18	The roles of balancing selection and recombination in the evolution of rattlesnake venom. Nature Ecology and Evolution, 2022, 6, 1367-1380.	7.8	13

MATTHEW L HOLDING

#	Article	IF	CITATIONS
19	Individual Variability in Bothrops atrox Snakes Collected from Different Habitats in the Brazilian Amazon: New Findings on Venom Composition and Functionality. Toxins, 2021, 13, 814.	3.4	11
20	The importance of historical land use in the maintenance of early successional habitat for a threatened rattlesnake. Global Ecology and Conservation, 2018, 13, e00370.	2.1	10
21	Physiological Stress Integrates Resistance to Rattlesnake Venom and the Onset of Risky Foraging in California Ground Squirrels. Toxins, 2020, 12, 617.	3.4	9
22	The scales of coevolution: comparative phylogeography and genetic demography of a locally adapted venomous predator and its prey. Biological Journal of the Linnean Society, 2021, 132, 297-317.	1.6	8
23	Deep mutational scanning of the plasminogen activator inhibitor-1 functional landscape. Scientific Reports, 2021, 11, 18827.	3.3	8
24	Venom Gene Sequence Diversity and Expression Jointly Shape Diet Adaptation in Pitvipers. Molecular Biology and Evolution, 2022, 39, .	8.9	8
25	Serum-based inhibition of pitviper Venom by Eastern Indigo Snakes (<i>Drymarchon couperi</i>). Biology Open, 2019, 8, .	1.2	7
26	Gradual and Discrete Ontogenetic Shifts in Rattlesnake Venom Composition and Assessment of Hormonal and Ecological Correlates. Toxins, 2020, 12, 659.	3.4	7
27	Good vibrations: Assessing the stability of snake venom composition after researcher-induced disturbance in the laboratory. Toxicon, 2017, 133, 127-135.	1.6	6
28	Evaluating the thermal effects of translocation in a largeâ€bodied pitviper. Journal of Experimental Zoology, 2014, 321, 442-449.	1.2	2
29	Genetic characterization of potential venom resistance proteins in California ground squirrels (<i>Otospermophilus beecheyi</i>) using transcriptome analyses. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2023, 340, 259-269.	1.3	2
30	Confronting Scientific Misconceptions by Fostering a Classroom of Scientists in the Introductory Biology Lab. American Biology Teacher, 2014, 76, 518-523.	0.2	0
31	Experimental Manipulation of Corticosterone Does Not Affect Venom Composition or Functional Activity in Free-Ranging Rattlesnakes. Physiological and Biochemical Zoology, 2021, 94, 286-301.	1.5	0