Sergio Hoyer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8845492/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	NEARBY SUPERNOVA FACTORY OBSERVATIONS OF SN 2007if: FIRST TOTAL MASS MEASUREMENT OF A SUPER-CHANDRASEKHAR-MASS PROGENITOR. Astrophysical Journal, 2010, 713, 1073-1094.	4.5	292
2	The CHEOPS mission. Experimental Astronomy, 2021, 51, 109-151.	3.7	140
3	Six transiting planets and a chain of Laplace resonances in TOI-178. Astronomy and Astrophysics, 2021, 649, A26.	5.1	94
4	Expected performances of the Characterising Exoplanet Satellite (CHEOPS). Astronomy and Astrophysics, 2020, 635, A24.	5.1	69
5	First results from the Calan-Hertfordshire Extrasolar Planet Search: exoplanets and the discovery of an eccentric brown dwarf in the desert ^{ã~} . Monthly Notices of the Royal Astronomical Society, 2009, 398, 911-917.	4.4	67
6	TRANSIT MONITORING IN THE SOUTH (TraMoS) PROJECT: DISCARDING TRANSIT TIMING VARIATIONS IN WASP-5b. Astrophysical Journal, 2012, 748, 22.	4.5	63
7	M c Neil's Nebula in Orion: The Outburst History. Astrophysical Journal, 2004, 606, L123-L126.	4.5	62
8	The hot dayside and asymmetric transit of WASP-189 b seen by CHEOPS. Astronomy and Astrophysics, 2020, 643, A94.	5.1	61
9	RULING OUT THE ORBITAL DECAY OF THE WASP-43B EXOPLANET. Astronomical Journal, 2016, 151, 137.	4.7	58
10	The GTC exoplanet transit spectroscopy survey. Astronomy and Astrophysics, 2014, 563, A41.	5.1	57
11	Disk Evolution in the Orion OB1 Association. Astronomical Journal, 2005, 129, 935-946.	4.7	56
12	A HOT URANUS ORBITING THE SUPER METAL-RICH STAR HD 77338 AND THE METALLICITY-MASS CONNECTION. Astrophysical Journal, 2013, 766, 67.	4.5	56
13	Transit detection of the long-period volatile-rich super-Earth ν2 Lupi d with CHEOPS. Nature Astronomy, 2021, 5, 775-787.	10.1	51
14	Detection of Period Variations in Extrasolar Transiting Planet OGLE-TR-111b. Astrophysical Journal, 2008, 682, L49-L52.	4.5	50
15	TraMoS project – III. Improved physical parameters, timing analysis and starspot modelling of the WASP-4b exoplanet system from 38 transit observations. Monthly Notices of the Royal Astronomical Society, 2013, 434, 46-58.	4.4	49
16	CHEOPS observations of the HD 108236 planetary system: a fifth planet, improved ephemerides, and planetary radii. Astronomy and Astrophysics, 2021, 646, A157.	5.1	47
17	Broad-band spectrophotometry of HAT-P-32Âb: search for a scattering signature in the planetary spectrum. Monthly Notices of the Royal Astronomical Society, 2016, 463, 604-614.	4.4	43
18	FIVE NEW TRANSIT EPOCHS OF THE EXOPLANET OGLE-TR-111b. Astrophysical Journal, 2011, 733, 53.	4.5	42

SERGIO HOYER

#	Article	IF	CITATIONS
19	Analysis of Early Science observations with the CHaracterising ExOPlanets Satellite (<i>CHEOPS</i>) using <scp>pycheops</scp> . Monthly Notices of the Royal Astronomical Society, 2022, 514, 77-104.	4.4	38
20	SWEET-Cat 2.0: The Cat just got SWEETer. Astronomy and Astrophysics, 2021, 656, A53.	5.1	37
21	The changing face of AU Mic b: stellar spots, spin-orbit commensurability, and transit timing variations as seen by CHEOPS and TESS. Astronomy and Astrophysics, 2021, 654, A159.	5.1	36
22	TWENTY-ONE NEW LIGHT CURVES OF OGLE-TR-56b: NEW SYSTEM PARAMETERS AND LIMITS ON TIMING VARIATIONS. Astrophysical Journal, 2011, 741, 102.	4.5	33
23	ROSSITER-MCLAUGHLIN OBSERVATIONS OF 55 Cnc e. Astrophysical Journal Letters, 2014, 792, L31.	8.3	33
24	TraMoS – IV. Discarding the Quick Orbital Decay Hypothesis for OGLE-TR-113b. Monthly Notices of the Royal Astronomical Society, 2016, 455, 1334-1340.	4.4	33
25	Detection of Ongoing Mass Loss from HD 63433c, a Young Mini-Neptune. Astronomical Journal, 2022, 163, 68.	4.7	31
26	CHEOPS precision phase curve of the Super-Earth 55 Cancri e. Astronomy and Astrophysics, 2021, 653, A173.	5.1	30
27	TraMoS. Astronomy and Astrophysics, 2020, 636, A98.	5.1	30
28	A pair of sub-Neptunes transiting the bright K-dwarf TOI-1064 characterized with <i>CHEOPS</i> . Monthly Notices of the Royal Astronomical Society, 2022, 511, 1043-1071.	4.4	30
29	The atmosphere and architecture of WASP-189 b probed by its CHEOPS phase curve. Astronomy and Astrophysics, 2022, 659, A74.	5.1	26
30	Spi-OPS: <i>Spitzer</i> and CHEOPS confirm the near-polar orbit of MASCARA-1 b and reveal a hint of dayside reflection. Astronomy and Astrophysics, 2022, 658, A75.	5.1	25
31	<i>Kepler</i> Object of Interest Network. Astronomy and Astrophysics, 2018, 618, A41.	5.1	24
32	Detection of the tidal deformation of WASP-103b at 3 <i>if /i> with CHEOPS. Astronomy and Astrophysics, 2022, 657, A52.</i>	5.1	22
33	CHEOPS geometric albedo of the hot Jupiter HD 209458 b. Astronomy and Astrophysics, 2022, 659, L4.	5.1	20
34	TOI-431/HIP 26013: a super-Earth and a sub-Neptune transiting a bright, early K dwarf, with a third RV planet. Monthly Notices of the Royal Astronomical Society, 2021, 507, 2782-2803.	4.4	19
35	Exploiting timing capabilities of the CHEOPS mission with warm-Jupiter planets. Monthly Notices of the Royal Astronomical Society, 2021, 506, 3810-3830.	4.4	18
36	A search for transiting planets around hot subdwarfs. Astronomy and Astrophysics, 2021, 650, A205.	5.1	18

SERGIO HOYER

#	Article	IF	CITATIONS
37	Investigating the architecture and internal structure of the TOI-561 system planets with CHEOPS, HARPS-N, and TESS. Monthly Notices of the Royal Astronomical Society, 2022, 511, 4551-4571.	4.4	17
38	BEBOP III. Observations and an independent mass measurement of Kepler-16Â(AB)Âb – the first circumbinary planet detected with radial velocities. Monthly Notices of the Royal Astronomical Society, 2022, 511, 3561-3570.	4.4	16
39	<i>Kepler</i> Object of Interest Network. Astronomy and Astrophysics, 2018, 615, A79.	5.1	15
40	The EBLM project – VIII. First results for M-dwarf mass, radius, and effective temperature measurements using <i>CHEOPS</i> light curves. Monthly Notices of the Royal Astronomical Society, 2021, 506, 306-322.	4.4	15
41	An infrared study of the double nucleus in NGCÂ3256. Monthly Notices of the Royal Astronomical Society, 2008, 384, 316-322.	4.4	13
42	Transit timing variations of AU Microscopii b and c. Astronomy and Astrophysics, 2022, 659, L7.	5.1	12
43	<i>Kepler</i> Object of Interest Network. Astronomy and Astrophysics, 2019, 628, A108.	5.1	11
44	TOI-1431b/MASCARA-5b: A Highly Irradiated Ultrahot Jupiter Orbiting One of the Hottest and Brightest Known Exoplanet Host Stars. Astronomical Journal, 2021, 162, 292.	4.7	11
45	WASP-4 transit timing variation from a comprehensive set of 129 transits. Monthly Notices of the Royal Astronomical Society: Letters, 2020, 496, L11-L15.	3.3	10
46	A hot mini-Neptune in the radius valley orbiting solar analogue HD 110113. Monthly Notices of the Royal Astronomical Society, 2021, 502, 4842-4857.	4.4	10
47	Black Mirror: The impact of rotational broadening on the search for reflected light from 51 Pegasi b with high resolution spectroscopy. Astronomy and Astrophysics, 2022, 659, A121.	5.1	10
48	DISCOVERY AND CHARACTERIZATION OF AN EXTREMELY DEEP-ECLIPSING CATACLYSMIC VARIABLE: LSQ172554.8-643839. Astrophysical Journal, 2011, 732, 51.	4.5	6
49	The GTC exoplanet transit spectroscopy survey. Astronomy and Astrophysics, 2016, 589, A62.	5.1	6
50	TOI-220 <i>b</i> : a warm sub-Neptune discovered by <i>TESS</i> . Monthly Notices of the Royal Astronomical Society, 2021, 505, 3361-3379.	4.4	6
51	TOI-1296b and TOI-1298b observed with TESS and SOPHIE: two hot Saturn-mass exoplanets with different densities around metal-rich stars. Astronomy and Astrophysics, 2021, 653, A147.	5.1	6
52	Millimagnitude Photometry for Transiting Extrasolar Planetary Candidates. IV. Solution to the Puzzle of the Extremely Red OGLEâ€TRâ€82 Primary. Astrophysical Journal, 2007, 669, 1345-1353.	4.5	3
53	TESS and HARPS reveal two sub-Neptunes around TOI 1062. Astronomy and Astrophysics, 2021, 653, A105.	5.1	3
54	Constraints on <i>TESS</i> albedos for five hot Jupiters. Monthly Notices of the Royal Astronomical Society, 2022, 513, 3444-3457.	4.4	3

SERGIO HOYER

#	Article	IF	CITATIONS
55	Fundamental effective temperature measurements for eclipsing binary stars – III. SPIRou near-infrared spectroscopy and CHEOPS photometry of the benchmark GOV star EBLMÂJ0113+31. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	2
56	Exoplanet Surveys at Universidad de Chile. Proceedings of the International Astronomical Union, 2012, 8, 454-459.	0.0	0
57	<scp>archi</scp> : pipeline for light curve extraction of <i>CHEOPS</i> background stars. Monthly Notices of the Royal Astronomical Society, 2020, 496, 282-294.	4.4	0