Peter D Dayan

List of Publications by Citations

Source: https://exaly.com/author-pdf/8844944/peter-d-dayan-publications-by-citations.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

259 papers

36,024 citations

80 h-index 189 g-index

3O2 ext. papers

44,041 ext. citations

8.4 avg, IF

7.71 L-index

#	Paper	IF	Citations
259	Q-learning. <i>Machine Learning</i> , 1992 , 8, 279-292	4	5136
258	Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control. <i>Nature Neuroscience</i> , 2005 , 8, 1704-11	25.5	1688
257	Dissociable roles of ventral and dorsal striatum in instrumental conditioning. <i>Science</i> , 2004 , 304, 452-4	33.3	1671
256	Technical Note: Q-Learning. <i>Machine Learning</i> , 1992 , 8, 279-292	4	1498
255	Cortical substrates for exploratory decisions in humans. <i>Nature</i> , 2006 , 441, 876-9	50.4	1390
254	Temporal difference models and reward-related learning in the human brain. <i>Neuron</i> , 2003 , 38, 329-37	13.9	1139
253	Uncertainty, neuromodulation, and attention. <i>Neuron</i> , 2005 , 46, 681-92	13.9	1132
252	Model-based influences on humans' choices and striatal prediction errors. <i>Neuron</i> , 2011 , 69, 1204-15	13.9	1004
251	The Helmholtz machine. <i>Neural Computation</i> , 1995 , 7, 889-904	2.9	789
250	Tonic dopamine: opportunity costs and the control of response vigor. <i>Psychopharmacology</i> , 2007 , 191, 507-20	4.7	765
249	States versus rewards: dissociable neural prediction error signals underlying model-based and model-free reinforcement learning. <i>Neuron</i> , 2010 , 66, 585-95	13.9	725
248	Opponent interactions between serotonin and dopamine. Neural Networks, 2002, 15, 603-16	9.1	646
247	Reward, motivation, and reinforcement learning. <i>Neuron</i> , 2002 , 36, 285-98	13.9	626
246	Reinforcement learning: the good, the bad and the ugly. Current Opinion in Neurobiology, 2008, 18, 185-	- 9,6 6	592
245	The effect of correlated variability on the accuracy of a population code. <i>Neural Computation</i> , 1999 , 11, 91-101	2.9	590
244	Goals and habits in the brain. Neuron, 2013, 80, 312-25	13.9	577
243	Temporal difference models describe higher-order learning in humans. <i>Nature</i> , 2004 , 429, 664-7	50.4	488

(2006-2000)

242	Information processing with population codes. <i>Nature Reviews Neuroscience</i> , 2000 , 1, 125-32	13.5	482
241	Computational psychiatry. <i>Trends in Cognitive Sciences</i> , 2012 , 16, 72-80	14	470
240	A mathematical model explains saturating axon guidance responses to molecular gradients. <i>ELife</i> , 2016 , 5, e12248	8.9	370
239	Inference and computation with population codes. <i>Annual Review of Neuroscience</i> , 2003 , 26, 381-410	17	363
238	Differential encoding of losses and gains in the human striatum. <i>Journal of Neuroscience</i> , 2007 , 27, 482	6-3.6	356
237	Learning and selective attention. <i>Nature Neuroscience</i> , 2000 , 3 Suppl, 1218-23	25.5	335
236	Decision theory, reinforcement learning, and the brain. <i>Cognitive, Affective and Behavioral Neuroscience</i> , 2008 , 8, 429-53	3.5	325
235	Opponency revisited: competition and cooperation between dopamine and serotonin. <i>Neuropsychopharmacology</i> , 2011 , 36, 74-97	8.7	318
234	Dopamine: generalization and bonuses. <i>Neural Networks</i> , 2002 , 15, 549-59	9.1	312
233	Probabilistic interpretation of population codes. <i>Neural Computation</i> , 1998 , 10, 403-30	2.9	272
232	Space and time in visual context. <i>Nature Reviews Neuroscience</i> , 2007 , 8, 522-35	13.5	266
231	The misbehavior of value and the discipline of the will. <i>Neural Networks</i> , 2006 , 19, 1153-60	9.1	257
230	Serotonin in affective control. <i>Annual Review of Neuroscience</i> , 2009 , 32, 95-126	17	245
229	Improving Generalization for Temporal Difference Learning: The Successor Representation. <i>Neural Computation</i> , 1993 , 5, 613-624	2.9	245
228	Mapping anhedonia onto reinforcement learning: a behavioural meta-analysis. <i>Biology of Mood & Anxiety Disorders</i> , 2013 , 3, 12		243
227	Bee foraging in uncertain environments using predictive hebbian learning. <i>Nature</i> , 1995 , 377, 725-8	50.4	240
226	Go and no-go learning in reward and punishment: interactions between affect and effect. <i>NeuroImage</i> , 2012 , 62, 154-66	7.9	237
225	A normative perspective on motivation. <i>Trends in Cognitive Sciences</i> , 2006 , 10, 375-81	14	234

224	Human pavlovian-instrumental transfer. <i>Journal of Neuroscience</i> , 2008 , 28, 360-8	6.6	225
223	Bonsai trees in your head: how the pavlovian system sculpts goal-directed choices by pruning decision trees. <i>PLoS Computational Biology</i> , 2012 , 8, e1002410	5	217
222	Mapping value based planning and extensively trained choice in the human brain. <i>Nature Neuroscience</i> , 2012 , 15, 786-91	25.5	214
221	Disentangling the roles of approach, activation and valence in instrumental and pavlovian responding. <i>PLoS Computational Biology</i> , 2011 , 7, e1002028	5	214
220	A computational and neural model of momentary subjective well-being. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 12252-7	11.5	204
219	Model-based and model-free Pavlovian reward learning: revaluation, revision, and revelation. <i>Cognitive, Affective and Behavioral Neuroscience</i> , 2014 , 14, 473-92	3.5	203
218	Neural prediction errors reveal a risk-sensitive reinforcement-learning process in the human brain. <i>Journal of Neuroscience</i> , 2012 , 32, 551-62	6.6	191
217	Phasic norepinephrine: a neural interrupt signal for unexpected events. <i>Network: Computation in Neural Systems</i> , 2006 , 17, 335-50	0.7	182
216	Dopamine restores reward prediction errors in old age. <i>Nature Neuroscience</i> , 2013 , 16, 648-53	25.5	173
215	Acetylcholine in cortical inference. <i>Neural Networks</i> , 2002 , 15, 719-30	9.1	173
214	A model of hippocampally dependent navigation, using the temporal difference learning rule. <i>Hippocampus</i> , 2000 , 10, 1-16	3.5	173
213	Action dominates valence in anticipatory representations in the human striatum and dopaminergic midbrain. <i>Journal of Neuroscience</i> , 2011 , 31, 7867-75	6.6	171
212	Serotonin, inhibition, and negative mood. PLoS Computational Biology, 2008, 4, e4	5	166
211	Harm to others outweighs harm to self in moral decision making. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 17320-5	11.5	161
210	Serotonin selectively modulates reward value in human decision-making. <i>Journal of Neuroscience</i> , 2012 , 32, 5833-42	6.6	161
209	Action versus valence in decision making. <i>Trends in Cognitive Sciences</i> , 2014 , 18, 194-202	14	160
208	Optimal Plasticity from Matrix Memories: What Goes Up Must Come Down. <i>Neural Computation</i> , 1990 , 2, 85-93	2.9	153
207	Dopamine modulation in the basal ganglia locks the gate to working memory. <i>Journal of Computational Neuroscience</i> , 2006 , 20, 153-66	1.4	152

(2014-2009)

206	How humans integrate the prospects of pain and reward during choice. <i>Journal of Neuroscience</i> , 2009 , 29, 14617-26	6.6	147
205	Dopamine modulates reward-related vigor. <i>Neuropsychopharmacology</i> , 2013 , 38, 1495-503	8.7	143
204	The convergence of TD(I) for general [] Machine Learning, 1992, 8, 341-362	4	125
203	Off-line replay maintains declarative memories in a model of hippocampal-neocortical interactions. <i>Nature Neuroscience</i> , 2004 , 7, 286-94	25.5	123
202	Effort and valuation in the brain: the effects of anticipation and execution. <i>Journal of Neuroscience</i> , 2013 , 33, 6160-9	6.6	120
201	Bayesian model predicts the response of axons to molecular gradients. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 10296-301	11.5	116
200	Dopamine and performance in a reinforcement learning task: evidence from Parkinson's disease. <i>Brain</i> , 2012 , 135, 1871-83	11.2	115
199	Dopaminergic Modulation of Decision Making and Subjective Well-Being. <i>Journal of Neuroscience</i> , 2015 , 35, 9811-22	6.6	113
198	Twenty-five lessons from computational neuromodulation. <i>Neuron</i> , 2012 , 76, 240-56	13.9	109
197	Charting the landscape of priority problems in psychiatry, part 1: classification and diagnosis. <i>Lancet Psychiatry,the</i> , 2016 , 3, 77-83	23.3	107
196	The algorithmic anatomy of model-based evaluation. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2014 , 369,	5.8	103
195	Depression: a decision-theoretic analysis. <i>Annual Review of Neuroscience</i> , 2015 , 38, 1-23	17	102
194	The involvement of recurrent connections in area CA3 in establishing the properties of place fields: a model. <i>Journal of Neuroscience</i> , 2000 , 20, 7463-77	6.6	100
193	Matching storage and recall: hippocampal spike timing-dependent plasticity and phase response curves. <i>Nature Neuroscience</i> , 2005 , 8, 1677-83	25.5	98
192	Acquisition and extinction in autoshaping. <i>Psychological Review</i> , 2002 , 109, 533-44	6.3	98
191	Adaptive integration of habits into depth-limited planning defines a habitual-goal-directed spectrum. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 12868-12873	11.5	96
190	Association of Neural and Emotional Impacts of Reward Prediction Errors With Major Depression. JAMA Psychiatry, 2017 , 74, 790-797	14.5	93
189	The habenula encodes negative motivational value associated with primary punishment in humans. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 11858-63	11.5	93

188	A Bayesian formulation of behavioral control. <i>Cognition</i> , 2009 , 113, 314-328	3.5	93
187	Dissociable Effects of Serotonin and Dopamine on the Valuation of Harm in Moral Decision Making. <i>Current Biology</i> , 2015 , 25, 1852-9	6.3	92
186	Interplay of approximate planning strategies. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 3098-103	11.5	92
185	Dopamine, uncertainty and TD learning. Behavioral and Brain Functions, 2005, 1, 6	4.1	92
184	Action controls dopaminergic enhancement of reward representations. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 7511-6	11.5	86
183	Adaptation across the cortical hierarchy: low-level curve adaptation affects high-level facial-expression judgments. <i>Journal of Neuroscience</i> , 2008 , 28, 3374-83	6.6	86
182	Fast Sequences of Non-spatial State Representations in Humans. <i>Neuron</i> , 2016 , 91, 194-204	13.9	83
181	Bayesian modelling of Jumping-to-Conclusions bias in delusional patients. <i>Cognitive Neuropsychiatry</i> , 2011 , 16, 422-47	2	80
180	Dopamine, learning, and impulsivity: a biological account of attention-deficit/hyperactivity disorder. <i>Journal of Child and Adolescent Psychopharmacology</i> , 2005 , 15, 160-79; discussion 157-9	2.9	80
179	Foraging for foundations in decision neuroscience: insights from ethology. <i>Nature Reviews Neuroscience</i> , 2018 , 19, 419-427	13.5	75
178	Flexible shaping: how learning in small steps helps. <i>Cognition</i> , 2009 , 110, 380-94	3.5	74
177	Nonpolitical images evoke neural predictors of political ideology. <i>Current Biology</i> , 2014 , 24, 2693-9	6.3	73
176	Dynamics of attentional selection under conflict: toward a rational Bayesian account. <i>Journal of Experimental Psychology: Human Perception and Performance</i> , 2009 , 35, 700-17	2.6	73
175	Moral transgressions corrupt neural representations of value. <i>Nature Neuroscience</i> , 2017 , 20, 879-885	25.5	68
174	Computations Underlying Social Hierarchy Learning: Distinct Neural Mechanisms for Updating and Representing Self-Relevant Information. <i>Neuron</i> , 2016 , 92, 1135-1147	13.9	68
173	Algorithms for survival: a comparative perspective on emotions. <i>Nature Reviews Neuroscience</i> , 2017 , 18, 311-319	13.5	66
172	How to set the switches on this thing. Current Opinion in Neurobiology, 2012, 22, 1068-74	7.6	65
171	Differential, but not opponent, effects of L -DOPA and citalopram on action learning with reward and punishment. <i>Psychopharmacology</i> , 2014 , 231, 955-66	4.7	63

170	Vigor in the face of fluctuating rates of reward: an experimental examination. <i>Journal of Cognitive Neuroscience</i> , 2011 , 23, 3933-8	3.1	63
169	A common mechanism for adaptive scaling of reward and novelty. Human Brain Mapping, 2010 , 31, 1380) -94	63
168	Simple Plans or Sophisticated Habits? State, Transition and Learning Interactions in the Two-Step Task. <i>PLoS Computational Biology</i> , 2015 , 11, e1004648	5	61
167	Cortical Surround Interactions and Perceptual Salience via Natural Scene Statistics. <i>PLoS Computational Biology</i> , 2012 , 8, e1002405	5	60
166	Exploration bonuses and dual control. <i>Machine Learning</i> , 1996 , 25, 5-22	4	60
165	Modeling Avoidance in Mood and Anxiety Disorders Using Reinforcement Learning. <i>Biological Psychiatry</i> , 2017 , 82, 532-539	7.9	59
164	Locus coeruleus integrity in old age is selectively related to memories linked with salient negative events. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 2228	-2233	59
163	A temporal difference account of avoidance learning. <i>Network: Computation in Neural Systems</i> , 2008 , 19, 137-60	0.7	59
162	Goal-directed control and its antipodes. Neural Networks, 2009, 22, 213-9	9.1	58
161	Risk Taking for Potential Reward Decreases across the Lifespan. <i>Current Biology</i> , 2016 , 26, 1634-1639	6.3	57
160	Persecutory delusions and the conditioned avoidance paradigm: towards an integration of the psychology and biology of paranoia. <i>Cognitive Neuropsychiatry</i> , 2007 , 12, 495-510	2	56
159	Perceptual organization in the tilt illusion. <i>Journal of Vision</i> , 2009 , 9, 19.1-20	0.4	55
158	Pharmacological Fingerprints of Contextual Uncertainty. <i>PLoS Biology</i> , 2016 , 14, e1002575	9.7	55
157	The Convergence of TD(I) for General [] <i>Machine Learning</i> , 1992 , 8, 341-362	4	54
156	Simple substrates for complex cognition. <i>Frontiers in Neuroscience</i> , 2008 , 2, 255-63	5.1	53
155	Synapses with short-term plasticity are optimal estimators of presynaptic membrane potentials. Nature Neuroscience, 2010 , 13, 1271-5	25.5	52
154	Doubly distributional population codes: simultaneous representation of uncertainty and multiplicity. <i>Neural Computation</i> , 2003 , 15, 2255-79	2.9	52
153	Instrumental vigour in punishment and reward. European Journal of Neuroscience, 2012, 35, 1152-68	3.5	51

152	Dopamine, reinforcement learning, and addiction. <i>Pharmacopsychiatry</i> , 2009 , 42 Suppl 1, S56-65	2	50
151	Computational phenotyping of two-person interactions reveals differential neural response to depth-of-thought. <i>PLoS Computational Biology</i> , 2012 , 8, e1002841	5	49
150	Necessary, yet dissociable contributions of the insular and ventromedial prefrontal cortices to norm adaptation: computational and lesion evidence in humans. <i>Journal of Neuroscience</i> , 2015 , 35, 467-	13 6	48
149	Decision-Theoretic Psychiatry. Clinical Psychological Science, 2015, 3, 400-421	6	46
148	Formalizing Neurath's ship: Approximate algorithms for online causal learning. <i>Psychological Review</i> , 2017 , 124, 301-338	6.3	46
147	An effect of serotonergic stimulation on learning rates for rewards apparent after long intertrial intervals. <i>Nature Communications</i> , 2018 , 9, 2477	17.4	46
146	Space, Time, and Fear: Survival Computations along Defensive Circuits. <i>Trends in Cognitive Sciences</i> , 2020 , 24, 228-241	14	45
145	Striatal structure and function predict individual biases in learning to avoid pain. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 4812-7	11.5	45
144	Fast population coding. Neural Computation, 2007, 19, 404-41	2.9	44
143	Uncertainty and Learning. IETE Journal of Research, 2003, 49, 171-181	0.9	43
142	Temporal structure in associative retrieval. <i>ELife</i> , 2015 , 4,	8.9	43
141	Dopamine Increases a Value-Independent Gambling Propensity. <i>Neuropsychopharmacology</i> , 2016 , 41, 2658-67	8.7	43
140	The Protective Action Encoding of Serotonin Transients in the Human Brain. <i>Neuropsychopharmacology</i> , 2018 , 43, 1425-1435	8.7	40
139	The modulation of savouring by prediction error and its effects on choice. <i>ELife</i> , 2016 , 5,	8.9	40
138	Bilinearity, rules, and prefrontal cortex. Frontiers in Computational Neuroscience, 2007, 1, 1	3.5	38
137	Increased decision thresholds enhance information gathering performance in juvenile Obsessive-Compulsive Disorder (OCD). <i>PLoS Computational Biology</i> , 2017 , 13, e1005440	5	37
136	Charting the landscape of priority problems in psychiatry, part 2: pathogenesis and aetiology. Lancet Psychiatry,the, 2016 , 3, 84-90	23.3	37
135	Altered learning under uncertainty in unmedicated mood and anxiety disorders. <i>Nature Human Behaviour</i> , 2019 , 3, 1116-1123	12.8	34

(2012-2015)

134	A probabilistic palimpsest model of visual short-term memory. <i>PLoS Computational Biology</i> , 2015 , 11, e1004003	5	31	
133	Tamping Ramping: Algorithmic, Implementational, and Computational Explanations of Phasic Dopamine Signals in the Accumbens. <i>PLoS Computational Biology</i> , 2015 , 11, e1004622	5	30	
132	Safety out of control: dopamine and defence. Behavioral and Brain Functions, 2016, 12, 15	4.1	29	
131	Increased decision thresholds trigger extended information gathering across the compulsivity spectrum. <i>Translational Psychiatry</i> , 2017 , 7, 1296	8.6	29	
130	Nonlinear ideal observation and recurrent preprocessing in perceptual learning. <i>Network: Computation in Neural Systems</i> , 2003 , 14, 233-247	0.7	29	
129	When money is not enough: awareness, success, and variability in motor learning. <i>PLoS ONE</i> , 2014 , 9, e86580	3.7	28	
128	Soft mixer assignment in a hierarchical generative model of natural scene statistics. <i>Neural Computation</i> , 2006 , 18, 2680-718	2.9	28	
127	Pupil-linked phasic arousal evoked by violation but not emergence of regularity within rapid sound sequences. <i>Nature Communications</i> , 2019 , 10, 4030	17.4	27	
126	Decodability of Reward Learning Signals Predicts Mood Fluctuations. Current Biology, 2018, 28, 1433-14	4369₃e7	27	
125	Selective Bayes: attentional load and crowding. Vision Research, 2010, 50, 2248-60	2.1	27	
124	Forming global estimates of self-performance from local confidence. <i>Nature Communications</i> , 2019 , 10, 1141	17.4	26	
123	How People Use Social Information to Find out What to Want in the Paradigmatic Case of Inter-temporal Preferences. <i>PLoS Computational Biology</i> , 2016 , 12, e1004965	5	26	
122	Sparse coding can predict primary visual cortex receptive field changes induced by abnormal visual input. <i>PLoS Computational Biology</i> , 2013 , 9, e1003005	5	25	
121	Serotonin's many meanings elude simple theories. <i>ELife</i> , 2015 , 4,	8.9	25	
120	The influence of contextual reward statistics on risk preference. <i>NeuroImage</i> , 2016 , 128, 74-84	7.9	25	
119	Pavlovian-instrumental interaction in 'observing behavior'. <i>PLoS Computational Biology</i> , 2010 , 6, e1000	9 0 3	24	
118	Attenuation of dopamine-modulated prefrontal value signals underlies probabilistic reward learning deficits in old age. <i>ELife</i> , 2017 , 6,	8.9	24	
117	The effect of motivation on movement: a study of bradykinesia in Parkinson's disease. <i>PLoS ONE</i> , 2012 , 7, e47138	3.7	23	

116	Computational differences between asymmetrical and symmetrical networks. <i>Network: Computation in Neural Systems</i> , 1999 , 10, 59-77	0.7	23
115	The roles of online and offline replay in planning. <i>ELife</i> , 2020 , 9,	8.9	22
114	Values and Actions in Aversion 2009 , 175-191		22
113	Computational differences between asymmetrical and symmetrical networks		22
112	Nonlinear ideal observation and recurrent preprocessing in perceptual learning		22
111	Dissociating neural learning signals in human sign- and goal-trackers. <i>Nature Human Behaviour</i> , 2020 , 4, 201-214	12.8	22
110	Pavlovian influences on learning differ between rats and mice in a counter-balanced Go/NoGo judgement bias task. <i>Behavioural Brain Research</i> , 2017 , 331, 214-224	3.4	21
109	Monte Carlo Planning Method Estimates Planning Horizons during Interactive Social Exchange. <i>PLoS Computational Biology</i> , 2015 , 11, e1004254	5	21
108	The value of what's to come: Neural mechanisms coupling prediction error and the utility of anticipation. <i>Science Advances</i> , 2020 , 6, eaba3828	14.3	20
107	Sensory Conflict Disrupts Activity of the Drosophila Circadian Network. <i>Cell Reports</i> , 2016 , 17, 1711-17	1& 0.6	20
106	Rationalizable irrationalities of choice. <i>Topics in Cognitive Science</i> , 2014 , 6, 204-28	2.5	20
105	Structure in the Space of Value Functions. <i>Machine Learning</i> , 2002 , 49, 325-346	4	20
104	The Dopaminergic Midbrain Mediates an Effect of Average Reward on Pavlovian Vigor. <i>Journal of Cognitive Neuroscience</i> , 2016 , 28, 1303-17	3.1	20
103	Change, stability, and instability in the Pavlovian guidance of behaviour from adolescence to young adulthood. <i>PLoS Computational Biology</i> , 2018 , 14, e1006679	5	20
102	When planning to survive goes wrong: predicting the future and replaying the past in anxiety and PTSD. <i>Current Opinion in Behavioral Sciences</i> , 2018 , 24, 89-95	4	20
101	The limits of chemosensation vary across dimensions. <i>Nature Communications</i> , 2015 , 6, 7468	17.4	19
100	Realizing the Clinical Potential of Computational Psychiatry: Report From the Banbury Center Meeting, February 2019. <i>Biological Psychiatry</i> , 2020 , 88, e5-e10	7.9	19
99	A model of risk and mental state shifts during social interaction. <i>PLoS Computational Biology</i> , 2018 , 14, e1005935	5	19

98	Parsing the Role of the Hippocampus in Approach-Avoidance Conflict. Cerebral Cortex, 2017, 27, 201-21	155.1	19
97	Beta-Blocker Propranolol Modulates Decision Urgency During Sequential Information Gathering. Journal of Neuroscience, 2018 , 38, 7170-7178	6.6	18
96	The Role of Value Systems in Decision Making 2008 , 51-70		18
95	Retrospective model-based inference guides model-free credit assignment. <i>Nature Communications</i> , 2019 , 10, 750	17.4	17
94	Cognitive Bias in Ambiguity Judgements: Using Computational Models to Dissect the Effects of Mild Mood Manipulation in Humans. <i>PLoS ONE</i> , 2016 , 11, e0165840	3.7	17
93	The Anterior Cingulate Cortex Predicts Future States to Mediate Model-Based Action Selection. <i>Neuron</i> , 2021 , 109, 149-163.e7	13.9	17
92	The social contingency of momentary subjective well-being. <i>Nature Communications</i> , 2016 , 7, 11825	17.4	15
91	A computational account of threat-related attentional bias. <i>PLoS Computational Biology</i> , 2019 , 15, e100	07;341	15
90	Magnetoencephalography decoding reveals structural differences within integrative decision processes. <i>Nature Human Behaviour</i> , 2018 , 2, 670-681	12.8	15
89	Matters temporal. <i>Trends in Cognitive Sciences</i> , 2002 , 6, 105-106	14	14
89 88	Matters temporal. <i>Trends in Cognitive Sciences</i> , 2002 , 6, 105-106 Semi-rational models of conditioning: 2008 , 431-452	14	14
		14 4·9	, in the second second
88	Semi-rational models of conditioning: 2008 , 431-452 Assessing animal affect: an automated and self-initiated judgement bias task based on natural		14
88 8 ₇	Semi-rational models of conditioning: 2008, 431-452 Assessing animal affect: an automated and self-initiated judgement bias task based on natural investigative behaviour. <i>Scientific Reports</i> , 2018, 8, 12400 Prefrontal Dynamics Associated with Efficient Detours and Shortcuts: A Combined Functional Magnetic Resonance Imaging and Magnetoencenphalography Study. <i>Journal of Cognitive</i>	4.9	14
88 87 86	Assessing animal affect: an automated and self-initiated judgement bias task based on natural investigative behaviour. <i>Scientific Reports</i> , 2018 , 8, 12400 Prefrontal Dynamics Associated with Efficient Detours and Shortcuts: A Combined Functional Magnetic Resonance Imaging and Magnetoencenphalography Study. <i>Journal of Cognitive Neuroscience</i> , 2019 , 31, 1227-1247 Optimal recall from bounded metaplastic synapses: predicting functional adaptations in	4.9	14 14 13
88 87 86 85	Assessing animal affect: an automated and self-initiated judgement bias task based on natural investigative behaviour. <i>Scientific Reports</i> , 2018 , 8, 12400 Prefrontal Dynamics Associated with Efficient Detours and Shortcuts: A Combined Functional Magnetic Resonance Imaging and Magnetoencenphalography Study. <i>Journal of Cognitive Neuroscience</i> , 2019 , 31, 1227-1247 Optimal recall from bounded metaplastic synapses: predicting functional adaptations in hippocampal area CA3. <i>PLoS Computational Biology</i> , 2014 , 10, e1003489 Optimal indolence: a normative microscopic approach to work and leisure. <i>Journal of the Royal</i>	4.9 3.1 5	14 14 13
88 87 86 85 84	Assessing animal affect: an automated and self-initiated judgement bias task based on natural investigative behaviour. <i>Scientific Reports</i> , 2018 , 8, 12400 Prefrontal Dynamics Associated with Efficient Detours and Shortcuts: A Combined Functional Magnetic Resonance Imaging and Magnetoencenphalography Study. <i>Journal of Cognitive Neuroscience</i> , 2019 , 31, 1227-1247 Optimal recall from bounded metaplastic synapses: predicting functional adaptations in hippocampal area CA3. <i>PLoS Computational Biology</i> , 2014 , 10, e1003489 Optimal indolence: a normative microscopic approach to work and leisure. <i>Journal of the Royal Society Interface</i> , 2014 , 11, 20130969 Models that learn how humans learn: The case of decision-making and its disorders. <i>PLoS</i>	4.9 3.1 5	14 14 13 13

80	Early childhood investment impacts social decision-making four decades later. <i>Nature Communications</i> , 2018 , 9, 4705	17.4	12
79	Prior preferences beneficially influence social and non-social learning. <i>Nature Communications</i> , 2017 , 8, 817	17.4	11
78	Backtracking during navigation is correlated with enhanced anterior cingulate activity and suppression of alpha oscillations and the 'default-mode' network. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2019 , 286, 20191016	4.4	11
77	Recurrent sampling models for the Helmholtz machine. <i>Neural Computation</i> , 1999 , 11, 653-78	2.9	10
76	Light Dominates Peripheral Circadian Oscillations in Drosophila melanogaster During Sensory Conflict. <i>Journal of Biological Rhythms</i> , 2017 , 32, 423-432	3.2	9
75	An unsupervised learning model of neural plasticity: Orientation selectivity in goggle-reared kittens. <i>Vision Research</i> , 2007 , 47, 2868-77	2.1	9
74	Images, frames, and connectionist hierarchies. <i>Neural Computation</i> , 2006 , 18, 2293-319	2.9	9
73	Anterior cingulate cortex represents action-state predictions and causally mediates model-based reinforcement learning in a two-step decision task		9
72	Uncertainty in learning, choice, and visual fixation. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 3291-3300	11.5	8
71	The three R's of trust. Current Opinion in Behavioral Sciences, 2015 , 3, 102-106	4	8
70	Some work and some play: microscopic and macroscopic approaches to labor and leisure. <i>PLoS Computational Biology</i> , 2014 , 10, e1003894	5	8
69	Prospective and retrospective temporal difference learning. <i>Network: Computation in Neural Systems</i> , 2009 , 20, 32-46	0.7	8
68	The Variance of Covariance Rules for Associative Matrix Memories and Reinforcement Learning. <i>Neural Computation</i> , 1993 , 5, 205-209	2.9	8
67	Interrupting behaviour: Minimizing decision costs via temporal commitment and low-level interrupts. <i>PLoS Computational Biology</i> , 2018 , 14, e1005916	5	8
66	Impaired adaptation of learning to contingency volatility in internalizing psychopathology. <i>ELife</i> , 2020 , 9,	8.9	8
65	Multiple value signals in dopaminergic midbrain and their role in avoidance contexts. <i>NeuroImage</i> , 2016 , 135, 197-203	7.9	8
64	Taming the shrewdness of neural function: methodological challenges in computational psychiatry. <i>Current Opinion in Behavioral Sciences</i> , 2015 , 5, 128-132	4	6
63	The influence of receptor positioning on chemotactic information. <i>Journal of Theoretical Biology</i> , 2014 , 360, 95-101	2.3	6

62	Models of Value and Choice 2012 , 33-52		6	
61	Exploration from Generalization Mediated by Multiple Controllers 2013 , 73-91		6	
60	Reward and punisher experience alter rodent decision-making in a judgement bias task. <i>Scientific Reports</i> , 2020 , 10, 11839	4.9	6	
59	Control of neurite growth and guidance by an inhibitory cell-body signal. <i>PLoS Computational Biology</i> , 2018 , 14, e1006218	5	6	
58	Combined model-free and model-sensitive reinforcement learning in non-human primates. <i>PLoS Computational Biology</i> , 2020 , 16, e1007944	5	5	
57	Learning Contextual Reward Expectations for Value Adaptation. <i>Journal of Cognitive Neuroscience</i> , 2018 , 30, 50-69	3.1	5	
56	The role of background statistics in face adaptation. <i>Journal of Neuroscience</i> , 2009 , 29, 12035-44	6.6	5	
55	Pattern formation and cortical maps. <i>Journal of Physiology (Paris</i>), 2003 , 97, 475-89		5	
54	Human subjects exploit a cognitive map for credit assignment. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	5	
53	Reinforcement Learning		5	
52	Computational Psychiatry for Computers. <i>IScience</i> , 2020 , 23, 101772	6.1	4	•
51	Recognition in Hierarchical Models 1997 , 43-62		4	
50	Integrated accounts of behavioral and neuroimaging data using flexible recurrent neural network mod	els	4	
49	The value of what∃ to come: neural mechanisms coupling prediction error and reward anticipation		4	
48	Disentangled behavioral representations		4	
47	Peripheral Serotonin 1B Receptor Transcription Predicts the Effect of Acute Tryptophan Depletion on Risky Decision-Making. <i>International Journal of Neuropsychopharmacology</i> , 2017 , 20, 58-66	5.8	4	
46	Dissecting the links between reward and loss, decision-making, and self-reported affect using a computational approach. <i>PLoS Computational Biology</i> , 2021 , 17, e1008555	5	4	
45	Forget-me-some: General versus special purpose models in a hierarchical probabilistic task. <i>PLoS ONE</i> , 2018 , 13, e0205974	3.7	4	

44	Anticipation and choice heuristics in the dynamic consumption of pain relief. <i>PLoS Computational Biology</i> , 2015 , 11, e1004030	5	3
43	Adversarial vulnerabilities of human decision-making. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 29221-29228	11.5	3
42	Optimal decisions for contrast discrimination. <i>Journal of Vision</i> , 2011 , 11,	0.4	3
41	The roles of online and offline replay in planning		3
40	Memory Alone Does Not Account for the Way Rats Learn a Simple Spatial Alternation Task. <i>Journal of Neuroscience</i> , 2020 , 40, 7311-7317	6.6	3
39	Pavlovian-instrumental interactions in active avoidance: The bark of neutral trials. <i>Brain Research</i> , 2019 , 1713, 52-61	3.7	3
38	A step-by-step guide to dopamine. <i>Biological Psychiatry</i> , 2012 , 71, 842-3	7.9	2
37	How do people learn how to plan? 2019,		2
36	Humans Use Forward Thinking to Exert Social Control		2
35	Noradrenaline modulates decision urgency during sequential information gathering		2
34	Simple Plans or Sophisticated Habits? State, Transition and Learning Interactions in the Two-step Task.		2
33	Short-Term Fasting Selectively Influences Impulsivity in Healthy Individuals. <i>Frontiers in Psychology</i> , 2020 , 11, 1644	3.4	2
32	Optimism and pessimism in optimised replay		2
31	Peril, Prudence and Planning as Risk, Avoidance and Worry		2
30	Efficiency and prioritization of inference-based credit assignment. Current Biology, 2021, 31, 2747-2756	5. € 63	2
29	Control over patch encounters changes foraging behavior. <i>IScience</i> , 2021 , 24, 103005	6.1	2
28	Models and Methods for Reinforcement Learning 2018 , 1-40		1
27	Learning to use past evidence in a sophisticated world model. <i>PLoS Computational Biology</i> , 2019 , 15, e1007093	5	1

26	"Liking" as an early and editable draft of long-run affective value PLoS Biology, 2022, 20, e3001476	9.7	1
25	Optimism and pessimism in optimised replay PLoS Computational Biology, 2022, 18, e1009634	5	1
24	Combined model-free and model-sensitive reinforcement learning in non-human primates		1
23	Neural Network Poisson Models for Behavioural and Neural Spike Train Data		1
22	Metacognitive Computations for Information Search: Confidence in Control		1
21	When will's wont wants wanting. <i>Behavioral and Brain Sciences</i> , 2021 , 44, e35	0.9	1
20	Using Primary Reinforcement to Enhance Translatability of a Human Affect and Decision-Making Judgment Bias Task. <i>Journal of Cognitive Neuroscience</i> , 2021 , 33, 2523-2535	3.1	1
19	Neural encoding of perceived patch value during competitive and hazardous virtual foraging. <i>Nature Communications</i> , 2021 , 12, 5478	17.4	1
18	Dopamine enhances model-free credit assignment through boosting of retrospective model-based inference. <i>ELife</i> , 2021 , 10,	8.9	1
17	Neurofeedback through the lens of reinforcement learning <i>Trends in Neurosciences</i> , 2022 ,	13.3	1
16	Peril, prudence and planning as risk, avoidance and worry. <i>Journal of Mathematical Psychology</i> , 2022 , 106, 102617	1.2	0
15	When unsupervised training benefits category learning <i>Cognition</i> , 2021 , 221, 104984	3.5	O
14	A comparison of 'pruning' during multi-step planning in depressed and healthy individuals. <i>Psychological Medicine</i> , 2021 , 1-9	6.9	О
13	Liking <i>Current Biology</i> , 2021 , 31, R1555-R1557	6.3	Ο
12	Spatial preferences account for inter-animal variability during the continual learning of a dynamic cognitive task <i>Cell Reports</i> , 2022 , 39, 110708	10.6	O
11	Neurobiological Modeling 2017 , 526-541		
10	Fast oscillations in cortical circuits. <i>Network: Computation in Neural Systems</i> , 2000 , 11, 333-334	0.7	
9	Vaulting optimality. <i>Behavioral and Brain Sciences</i> , 1991 , 14, 221-222	0.9	

8 Conditions for Cognition. *Studies in Cognitive Systems*, **2000**, 1118-1132

7	Attention in Conditioning 2005 , 213-218	
6	Representation, abstraction, and simple-minded sophisticates. <i>Behavioral and Brain Sciences</i> , 2020 , 43, e126	0.9
5	Internality and the internalisation of failure: Evidence from a novel task. <i>PLoS Computational Biology</i> , 2021 , 17, e1009134	5
4	Combined model-free and model-sensitive reinforcement learning in non-human primates 2020 , 16, e1007944	
3	Combined model-free and model-sensitive reinforcement learning in non-human primates 2020 , 16, e1007944	
2	Combined model-free and model-sensitive reinforcement learning in non-human primates 2020 , 16, e1007944	
1	Combined model-free and model-sensitive reinforcement learning in non-human primates 2020 , 16, e1007944	