José Antonio HÃ³dar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8844628/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Freezing tolerance of seeds can explain differences in the distribution of two widespread mistletoe subspecies in Europe. Forest Ecology and Management, 2021, 482, 118806.	3.2	7
2	Expansion of elevational range in a forest pest: Can parasitoids track their hosts?. Ecosphere, 2021, 12, e03476.	2.2	11
3	Implications of mistletoe parasitism for the host metabolome: A new plant identity in the forest canopy. Plant, Cell and Environment, 2021, 44, 3655-3666.	5.7	8
4	Ecological assembly rules on arthropod community inhabiting mistletoes. Ecological Entomology, 2020, 45, 1088-1098.	2.2	3
5	Secondary foundation species foster novel plant–animal interactions in the forest canopy: evidence from mistletoe. Insect Conservation and Diversity, 2020, 13, 470-479.	3.0	3
6	INSTAR: An Agent-Based Model that integrates existing knowledge to simulate the population dynamics of a forest pest. Ecological Modelling, 2019, 411, 108764.	2.5	6
7	Mistletoe generates nonâ€ŧrophic and traitâ€mediated indirect interactions through a shared host of herbivore consumers. Ecosphere, 2019, 10, e02564.	2.2	10
8	We Are What We Eat: A Stoichiometric and Ecometabolomic Study of Caterpillars Feeding on Two Pine Subspecies of Pinus sylvestris. International Journal of Molecular Sciences, 2019, 20, 59.	4.1	10
9	Mistletoe Versus Host Pine: Does Increased Parasite Load Alter the Host Chemical Profile?. Journal of Chemical Ecology, 2019, 45, 95-105.	1.8	20
10	Dataset of occurrence and incidence of pine processionary moth in Andalusia, south Spain. ZooKeys, 2019, 852, 125-136.	1.1	6
11	Winter temperature predicts prolonged diapause in pine processionary moth species across their geographic range. PeerJ, 2019, 7, e6530.	2.0	34
12	Beneath the mistletoe: parasitized trees host a more diverse herbaceous vegetation and are more visited by rabbits. Annals of Forest Science, 2018, 75, 1.	2.0	13
13	Close and distant: Contrasting the metabolism of two closely related subspecies of Scots pine under the effects of folivory and summer drought. Ecology and Evolution, 2017, 7, 8976-8988.	1.9	20
14	Effect of habitat type and soil moisture on pupal stage of a Mediterranean forest pest (<i>Thaumetopoea pityocampa</i>). Agricultural and Forest Entomology, 2017, 19, 130-138.	1.3	18
15	Correct your own exam. Exercises for university students to develop writing skills in biology. SHS Web of Conferences, 2016, 26, 01079.	0.2	0
16	Are the metabolomic responses to folivory of closely related plant species linked to macroevolutionary and plant–folivore coevolutionary processes?. Ecology and Evolution, 2016, 6, 4372-4386.	1.9	15
17	From the individual to the landscape and back: timeâ€varying effects of climate and herbivory on tree sapling growth at distribution limits. Journal of Ecology, 2016, 104, 430-442.	4.0	13
18	Climate Warming and Past and Present Distribution of the Processionary Moths (Thaumetopoea spp.) in Europe, Asia Minor and North Africa. , 2015, , 81-161.		30

#	Article	IF	CITATIONS
19	No evidence of induced defence after defoliation in three pine species against an expanding pest, the pine processionary moth. Forest Ecology and Management, 2015, 356, 166-172.	3.2	9
20	Survival vs. growth trade-off in early recruitment challenges global warming impacts on Mediterranean mountain trees. Perspectives in Plant Ecology, Evolution and Systematics, 2015, 17, 369-378.	2.7	27
21	Natural History of the Processionary Moths (Thaumetopoea spp.): New Insights in Relation to Climate Change. , 2015, , 15-79.		61
22	Insect $\hat{a} \in $ Tree Interactions in Thaumetopoea pityocampa. , 2015, , 265-310.		18
23	Growth patterns at the southern range edge of Scots pine: Disentangling the effects of drought and defoliation by the pine processionary caterpillar. Forest Ecology and Management, 2014, 315, 129-137.	3.2	17
24	Tree damage and population density relationships for the pine processionary moth: Prospects for ecological research and pest management. Forest Ecology and Management, 2014, 328, 319-325.	3.2	13
25	Disparity in elevational shifts of <scp>E</scp> uropean trees in response to recent climate warming. Global Change Biology, 2013, 19, 2490-2499.	9.5	83
26	Needle terpene concentrations and emissions of two coexisting subspecies of Scots pine attacked by the pine processionary moth (Thaumetopoea pityocampa). Acta Physiologiae Plantarum, 2013, 35, 3047-3058.	2.1	34
27	Timing and intensity of bush cricket predation on egg batches of pine processionary moth: no evidence of population control. Agricultural and Forest Entomology, 2013, 15, 204-211.	1.3	6
28	Direct and Indirect Effects of Climate on Demography and Early Growth of Pinus sylvestris at the Rear Edge: Changing Roles of Biotic and Abiotic Factors. PLoS ONE, 2013, 8, e59824.	2.5	38
29	Climate change and the incidence of a forest pest in Mediterranean ecosystems: can the North Atlantic Oscillation be used as a predictor?. Climatic Change, 2012, 113, 699-711.	3.6	45
30	Limits of pine forest distribution at the treeline: herbivory matters. Plant Ecology, 2012, 213, 459-469.	1.6	40
31	Is insecticide spraying a viable and cost-efficient management practice to control pine processionary moth in Mediterranean woodlands?. Forest Ecology and Management, 2011, 261, 1732-1737.	3.2	33
32	Trophic interactions in an arid ecosystem: From decomposers to top-predators. Journal of Arid Environments, 2011, 75, 1333-1341.	2.4	21
33	Experimental Test of Postfire Management in Pine Forests: Impact of Salvage Logging versus Partial Cutting and Nonintervention on Bird–Species Assemblages. Conservation Biology, 2010, 24, 810-819.	4.7	61
34	Seed Dispersal Patterns by Large Frugivorous Mammals in a Degraded Mosaic Landscape. Restoration Ecology, 2010, 18, 619-627.	2.9	59
35	Positive adjacency effects mediated by seed disperser birds in pine plantations. Ecological Applications, 2010, 20, 1053-1060.	3.8	48
36	Species-specific responses of tree saplings to herbivory in contrasting light environments: An experimental approach. Ecoscience, 2010, 17, 156-165.	1.4	20

José Antonio Hódar

#	Article	IF	CITATIONS
37	Consequences of plant–chemical diversity for domestic goat food preference in Mediterranean forests. Acta Oecologica, 2009, 35, 117-127.	1.1	27
38	Biomass allocation and growth responses of Scots pine saplings to simulated herbivory depend on plant age and light availability. Plant Ecology, 2008, 197, 229-238.	1.6	44
39	Facilitation of tree saplings by nurse plants: Microhabitat amelioration or protection against herbivores?. Journal of Vegetation Science, 2008, 19, 161-172.	2.2	148
40	Wild boars (Sus scrofa) affect the recruitment rate and spatial distribution of holm oak (Quercus) Tj ETQq0 0	O rgBT /Ove	rlock 10 Tf 50
41	Shade and Herbivory Induce Fluctuating Asymmetry in a Mediterranean Oak. International Journal of Plant Sciences, 2008, 169, 631-635.	1.3	25
42	Foraging mode of the Moorish gecko Tarentola mauritanica in an arid environment: Inferences from abiotic setting, prey availability and dietary composition. Journal of Arid Environments, 2006, 65, 83-93.	2.4	36
43	Restoring Quercus pyrenaica forests using pioneer shrubs as nurse plants. Applied Vegetation Science, 2006, 9, 137.	1.9	59
44	Conditional outcomes in plant-herbivore interactions: neighbours matter. Oikos, 2006, 113, 148-156.	2.7	205
45	Restoring <i>Quercus pyrenaica</i> forests using pioneer shrubs as nurse plants. Applied Vegetation Science, 2006, 9, 137-142.	1.9	52
46	Alleviation of Summer Drought Boosts Establishment Success of Pinus sylvestris in a Mediterranean Mountain: An Experimental Approach. Plant Ecology, 2005, 181, 191-202.	1.6	98
47	Benefits of Using Shrubs as Nurse Plants for Reforestation in Mediterranean Mountains: A 4-Year Study. Restoration Ecology, 2004, 12, 352-358.	2.9	217
48	Seedling establishment of a boreal tree species (Pinus sylvestris) at its southernmost distribution limit: consequences of being in a marginal Mediterranean habitat. Journal of Ecology, 2004, 92, 266-277.	4.0	333
49	Herbivory and climatic warming: a Mediterranean outbreaking caterpillar attacks a relict, boreal pine species. Biodiversity and Conservation, 2004, 13, 493-500.	2.6	111
50	Herbivory has a greater impact in shade than in sun: response of Quercus pyrenaica seedlings to multifactorial environmental variation. Canadian Journal of Botany, 2004, 82, 357-364.	1.1	63
51	APPLYING PLANT FACILITATION TO FOREST RESTORATION: A META-ANALYSIS OF THE USE OF SHRUBS AS NURSE PLANTS. , 2004, 14, 1128-1138.		706
52	Feast and famine: previous defoliation limiting survival of pine processionary caterpillar Thaumetopoea pityocampa in Scots pine Pinus sylvestris. Acta Oecologica, 2004, 26, 203-210.	1.1	42
53	Pine processionary caterpillar Thaumetopoea pityocampa as a new threat for relict Mediterranean Scots pine forests under climatic warming. Biological Conservation, 2003, 110, 123-129.	4.1	173
54	Host utilisation by moth and larval survival of pine processionary caterpillar Thaumetopoea pityocampa in relation to food quality in three Pinus species. Ecological Entomology, 2002, 27, 292-301.	2.2	96

José Antonio Hódar

#	Article	IF	CITATIONS
55	Annual variability in reproduction of Juniperus communis L. in a Mediterranean mountain: Relationship to seed predation and weather. Ecoscience, 2002, 9, 251-255.	1.4	20
56	Leaf fluctuating asymmetry of Holm oak in response to drought under contrasting climatic conditions. Journal of Arid Environments, 2002, 52, 233-243.	2.4	59
57	Feeding habits of the blackwidow spider Latrodectus lilianae (Araneae: Theridiidae) in an arid zone of south-east Spain. Journal of Zoology, 2002, 257, 101-109.	1.7	42
58	Use of Shrubs as Nurse Plants: A New Technique for Reforestation in Mediterranean Mountains. Restoration Ecology, 2002, 10, 297-305.	2.9	234
59	Mechanisms blocking Pinus sylvestris colonization of Mediterranean mountain meadows. Journal of Vegetation Science, 2002, 13, 725.	2.2	16
60	Effect of browsing by ungulates on sapling growth of Scots pine in a Mediterranean environment: consequences for forest regeneration. Forest Ecology and Management, 2001, 144, 33-42.	3.2	103
61	Ungulate damage on Scots pines in Mediterranean environments: effects of association with shrubs. Canadian Journal of Botany, 2001, 79, 739-746.	1.1	23
62	Frugivory at Juniperus communis depends more on population characteristics than on individual attributes. Journal of Ecology, 2001, 89, 639-647.	4.0	68
63	Ungulate damage on Scots pines in Mediterranean environments: effects of association with shrubs. Canadian Journal of Botany, 2001, 79, 739-746.	1.1	47
64	Do empty <i>Juniperus communis</i> seeds defend filled seeds against predation by <i>Apodemus sylvaticus</i> ?. Ecoscience, 2000, 7, 214-221.	1.4	16
65	Geographical variation in seed production, predation and abortion in Juniperus communis throughout its range in Europe. Journal of Ecology, 2000, 88, 435-446.	4.0	185
66	Yew (Taxus baccata L.) regeneration is facilitated by fleshy-fruited shrubs in Mediterranean environments. Biological Conservation, 2000, 95, 31-38.	4.1	124
67	Habitat selection of the common chameleon (Chamaeleo chamaeleon) (L.) in an area under development in southern Spain: implications for conservation. Biological Conservation, 2000, 94, 63-68.	4.1	26
68	Bird Rejection of Unhealthy Fruits Reinforces the Mutualism between Juniper and Its Avian Dispersers. Oikos, 1999, 85, 536.	2.7	49
69	Seed predation and dispersal in relict Scots pine forests in southern Spain. Plant Ecology, 1999, 145, 115-123.	1.6	142
70	Age structure of Juniperus communis L. in the Iberian peninsula: Conservation of remnant populations in Mediterranean mountains. Biological Conservation, 1999, 87, 215-220.	4.1	113
71	FITNESS RESPONSES OF A CARNIVOROUS PLANT IN CONTRASTING ECOLOGICAL SCENARIOS. Ecology, 1998, 79, 1630-1644.	3.2	56
72	Feeding by vertebrate herbivores in a chemically heterogeneous environment. Ecoscience, 1997, 4, 304-310.	1.4	12

5

#	Article	IF	CITATIONS
73	Responses of a carnivorous plant to prey and inorganic nutrients in a Mediterranean environment. Oecologia, 1997, 111, 443-451.	2.0	34
74	Dartford Warblers Follow Stonechats While Foraging. Ornis Scandinavica, 1992, 23, 167.	1.0	8
75	A little further south: Host range and genetics of the Northern pine processionary moth, Thaumetopoea pinivora (Lepidoptera: Notodontidae) at the southern edge of its distribution. European Journal of Entomology, 0, 113, 200-206.	1.2	3
76	Do the arthropod communities on a parasitic plant and its hosts differ?. European Journal of Entomology, 0, 114, 215-221.	1.2	16