Jia-Rong Li

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8844565/jia-rong-li-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

33	479	12	21
papers	citations	h-index	g-index
36	557 ext. citations	3.3	3.34
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
33	Synthesis and properties of sildenafil isostere. <i>Archiv Der Pharmazie</i> , 2021 , 354, e2100145	4.3	
32	Design, Synthesis, and Biological Activity Studies of Istradefylline Derivatives Based on Adenine as A Receptor Antagonists. <i>ACS Omega</i> , 2021 , 6, 4386-4394	3.9	1
31	ZnCl-promoted domino reaction of 2-hydroxybenzonitriles with ketones for synthesis of 1,3-benzoxazin-4-ones <i>RSC Advances</i> , 2021 , 11, 29906-29911	3.7	
30	Hygroscopicity and Compositional Evolution of Atmospheric Aerosols Containing Water-Soluble Carboxylic Acid Salts and Ammonium Sulfate: Influence of Ammonium Depletion. <i>Environmental Science & Environmental Science & Envi</i>	10.3	18
29	Direct CH sulfenylation of quinoxalinones with thiols under visible-light-induced photocatalyst-free conditions. <i>Green Chemistry</i> , 2019 , 21, 6241-6245	10	60
28	A novel semi-synthesis of spinetoram-J based on the selective hydrolysis of 5,6-dihydro spinosyn A. <i>Natural Product Research</i> , 2019 , 33, 2801-2808	2.3	1
27	Investigation on the hydrolytic mechanism of cucurbit[6]uril in alkaline solution. <i>Royal Society Open Science</i> , 2018 , 5, 180038	3.3	2
26	Semi-synthesis and insecticidal activity of spinetoram J and its D-forosamine replacement analogues. <i>Beilstein Journal of Organic Chemistry</i> , 2018 , 14, 2321-2330	2.5	4
25	A semisynthesis of 3Wethyl-5,6-dihydrospinosyn J based on the spinosyn A aglycone. <i>Beilstein Journal of Organic Chemistry</i> , 2017 , 13, 2603-2609	2.5	3
24	Cationic Palladium(II) Complexes for Catalytic Wacker-Type Oxidation of Styrenes to Ketones Using O2 as the Sole Oxidant. <i>European Journal of Inorganic Chemistry</i> , 2017 , 2017, 5604-5608	2.3	9
23	An innovative synthesis of tertiary hydroxyl thieno[2,3-d]pyrimidinone skeleton: natural-like product from the tandem reaction of o-aminothienonitrile and carbonyl compound. <i>Tetrahedron Letters</i> , 2016 , 57, 2455-2461	2	6
22	Solubility of 3,7,9,11-Tetraoxo-2,4,6,8,10-pentaaza[3.3.3] Propellane (TOPAP) in Different Pure Solvents at Temperatures between 273.15 and 318.15 K. <i>Journal of Chemical & Data</i> , 2016, 61, 3277-3285	2.8	10
21	Base-catalyzed one-pot tandem reaction: an effective strategy for the synthesis of pyrazolo [3,4-d] pyrimidinone derivatives. <i>Tetrahedron</i> , 2015 , 71, 7658-7662	2.4	5
20	Aluminum Complexes Containing the CDAIDI Framework as Efficient Initiators for Ring-Opening Polymerization of Ecaprolactone. <i>Organometallics</i> , 2015 , 34, 105-108	3.8	25
19	Design and Synthesis of Hydrolytically Stable N-Nitrourea Explosives. <i>Propellants, Explosives, Pyrotechnics</i> , 2015 , 40, 908-913	1.7	2
18	A convenient four-component one-pot strategy toward the synthesis of pyrazolo[3,4-d]pyrimidines. <i>Beilstein Journal of Organic Chemistry</i> , 2015 , 11, 2125-31	2.5	5
17	Synthesis and Characterization of a Thermally and Hydrolytically Stable Energetic Material based on N-Nitrourea. <i>Propellants, Explosives, Pyrotechnics</i> , 2014 , 39, 662-669	1.7	15

LIST OF PUBLICATIONS

16	N-Heterocyclic Carbene-catalyzed Reactions of o-Aminonitriles with Carbonyl Compounds Approach to 2,3-Dihydroquinazolin-4(1H)-ones. <i>Chinese Journal of Chemistry</i> , 2014 , 32, 865-870	4.9	7
15	Copper-catalyzed tandem N-arylation/condensation: synthesis of quinazolin-4(3H)-ones from 2-halobenzonitriles and amides. <i>RSC Advances</i> , 2014 , 4, 44811-44814	3.7	27
14	Synthesis of 1, 6-Bis(trimethylsilylamino)benzene-Substituted Aluminum Hydrides: The Characterization of a Product from Ring-Opening Reaction of Tetrahydrofuran. <i>Zeitschrift Fur Anorganische Und Allgemeine Chemie</i> , 2014 , 640, 1081-1085	1.3	7
13	One-pot NHC-assisted access to 2,3-dihydropyrimido[4,5-d]pyrimidin-4(1H)-ones. <i>RSC Advances</i> , 2014 , 4, 35629-35634	3.7	8
12	A Divergent Synthesis of 1,8-Naphthyridines and Hydropyridopyrimidinones by the Reactions of o-Aminonitriles with Ketones. <i>Chinese Journal of Chemistry</i> , 2013 , 31, 443-448	4.9	12
11	Direct amination of azoles using CuCl2 complexes of amines under mild conditions. <i>RSC Advances</i> , 2013 , 3, 9622	3.7	17
10	Synthesis and Structural Characterization of Compounds Containing the AlDAl Motif. <i>Zeitschrift Fur Anorganische Und Allgemeine Chemie</i> , 2013 , 639, 2618-2622	1.3	10
9	Microwave-assisted synthesis of 2,3-dihydropyrido[2,3-d]pyrimidin-4(1H)-ones catalyzed by DBU in aqueous medium. <i>Green Chemistry</i> , 2012 , 14, 945	10	33
8	The Divergent Transformations of Aromatic o-Aminonitrile with Carbonyl Compound. <i>Journal of Heterocyclic Chemistry</i> , 2012 , 49, 533-542	1.9	20
7	Facile and One-Pot Synthesis of 1,2-Dihydroquinazolin-4(3H)-ones via Tandem Intramolecular Pinner/Dimroth Rearrangement. <i>Synthetic Communications</i> , 2010 , 40, 632-641	1.7	23
6	Simultaneous Synthesis of Pyrazolopyridines and Pyrazolopyrimidinones Under Microwave Irradiation. <i>Synthetic Communications</i> , 2009 , 39, 4010-4018	1.7	12
5	A new and facile synthesis of quinazoline-2,4(1H,3H)-diones. Organic Letters, 2009, 11, 1193-6	6.2	77
4	Investigation of the Reaction of o-Aminonitriles with Ketones: A New Modification of Friedlider Reaction and Structures of Its Products. <i>Synlett</i> , 2008 , 2008, 233-236	2.2	30
3	Novel synthesis of 2H-3,1-benzoxazine derivatives. <i>Journal of Heterocyclic Chemistry</i> , 2006 , 43, 745-748	1.9	7
2	Synthesis of 1,2-dihydro-4H-3,1-benzoxazine derivatives via ZnCl2 catalyzed cyclocondensation reaction. <i>Tetrahedron</i> , 2006 , 62, 7999-8005	2.4	20
1	Modified Preparation and Purification of 3-(2?,4?,6?-Trinitrobenzenyl) Amino-1,2,4-Triazole. <i>Propellants, Explosives, Pyrotechnics</i> , 1999 , 24, 95-95	1.7	3