Jia-Rong Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8844565/publications.pdf

Version: 2024-02-01

687363 610901 34 620 13 24 h-index citations g-index papers 36 36 36 751 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Direct Câ€"H sulfenylation of quinoxalinones with thiols under visible-light-induced photocatalyst-free conditions. Green Chemistry, 2019, 21, 6241-6245.	9.0	94
2	A New and Facile Synthesis of Quinazoline-2,4(1 <i>H</i> ,3 <i>H</i>)-diones. Organic Letters, 2009, 11, 1193-1196.	4.6	85
3	Microwave-assisted synthesis of 2,3-dihydropyrido[2,3-d]pyrimidin-4(1H)-ones catalyzed by DBU in aqueous medium. Green Chemistry, 2012, 14, 945.	9.0	39
4	Investigation of the Reaction of <i>o</i> -Aminonitriles with Ketones: A New Modification of FriedlAnder Reaction and Structures of Its Products. Synlett, 2008, 2008, 233-236.	1.8	36
5	Copper-catalyzed tandem N-arylation/condensation: synthesis of quinazolin-4(3H)-ones from 2-halobenzonitriles and amides. RSC Advances, 2014, 4, 44811-44814.	3.6	31
6	Facile and One-Pot Synthesis of 1,2-Dihydroquinazolin-4($3H)$ -ones via Tandem Intramolecular Pinner/Dimroth Rearrangement. Synthetic Communications, 2010, 40, 632-641.	2.1	29
7	Hygroscopicity and Compositional Evolution of Atmospheric Aerosols Containing Water-Soluble Carboxylic Acid Salts and Ammonium Sulfate: Influence of Ammonium Depletion. Environmental Science & Envir	10.0	29
8	Aluminum Complexes Containing the C–O–Al–O–C Framework as Efficient Initiators for Ring-Opening Polymerization of Îμ-Caprolactone. Organometallics, 2015, 34, 105-108.	2.3	28
9	The Divergent Transformations of Aromatic <i>o</i> aê€Aminonitrile with Carbonyl Compound. Journal of Heterocyclic Chemistry, 2012, 49, 533-542.	2.6	26
10	Synthesis of 1,2-dihydro-4H-3,1-benzoxazine derivatives via ZnCl2 catalyzed cyclocondensation reaction. Tetrahedron, 2006, 62, 7999-8005.	1.9	23
11	Synthesis and Characterization of a Thermally and Hydrolytically Stable Energetic Material based on Nâ€Nitrourea. Propellants, Explosives, Pyrotechnics, 2014, 39, 662-669.	1.6	21
12	Direct amination of azoles using CuCl2 complexes of amines under mild conditions. RSC Advances, 2013, 3, 9622.	3.6	18
13	Simultaneous Synthesis of Pyrazolopyridines and Pyrazolopyrimidinones Under Microwave Irradiation. Synthetic Communications, 2009, 39, 4010-4018.	2.1	14
14	A Divergent Synthesis of 1,8â€Naphthyridines and Hydropyridopyrimidinones by the Reactions of ⟨i⟩o⟨ i⟩â€Aminonitriles with Ketones. Chinese Journal of Chemistry, 2013, 31, 443-448.	4.9	14
15	Cationic Palladium(II) Complexes for Catalytic Wackerâ€√ype Oxidation of Styrenes to Ketones Using O ₂ as the Sole Oxidant. European Journal of Inorganic Chemistry, 2017, 2017, 5604-5608.	2.0	14
16	Synthesis and Structural Characterization of Compounds Containing the Al–O–Al Motif. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2013, 639, 2618-2622.	1.2	12
17	Solubility of 3,7,9,11-Tetraoxo-2,4,6,8,10-pentaaza [3.3.3] Propellane (TOPAP) in Different Pure Solvents at Temperatures between 273.15 and 318.15 K. Journal of Chemical & Engineering Data, 2016, 61, 3277-3285.	1.9	12
18	<i>N</i> â€Heterocyclic Carbeneâ€catalyzed Reactions of <i>o</i> â€Aminonitriles with Carbonyl Compounds Approach to 2,3â€Dihydroquinazolinâ€4(1 <i>H</i>)â€ones. Chinese Journal of Chemistry, 2014, 32, 865-870.	4.9	11

#	Article	IF	Citations
19	One-pot NHC-assisted access to 2,3-dihydropyrimido[4,5-d]pyrimidin-4(1H)-ones. RSC Advances, 2014, 4, 35629-35634.	3.6	11
20	Novel synthesis of 2H-3,1-benzoxazine derivatives. Journal of Heterocyclic Chemistry, 2006, 43, 745-748.	2.6	9
21	A convenient four-component one-pot strategy toward the synthesis of pyrazolo[3,4- <i>d</i>)pyrimidines. Beilstein Journal of Organic Chemistry, 2015, 11, 2125-2131.	2.2	9
22	Base-catalyzed one-pot tandem reaction: an effective strategy forÂthe synthesis of pyrazolo[3,4-d]pyrimidinone derivatives. Tetrahedron, 2015, 71, 7658-7662.	1.9	8
23	An innovative synthesis of tertiary hydroxyl thieno[2,3-d]pyrimidinone skeleton: natural-like product from the tandem reaction of o-aminothienonitrile and carbonyl compound. Tetrahedron Letters, 2016, 57, 2455-2461.	1.4	8
24	Synthesis of 1, 6â€Bis(trimethylsilylamino)benzeneâ€Substituted Aluminum Hydrides: The Characterization of a Product from Ringâ€Opening Reaction of Tetrahydrofuran. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2014, 640, 1081-1085.	1.2	7
25	Semi-synthesis and insecticidal activity of spinetoram J and its D-forosamine replacement analogues. Beilstein Journal of Organic Chemistry, 2018, 14, 2321-2330.	2.2	7
26	Design, Synthesis, and Biological Activity Studies of Istradefylline Derivatives Based on Adenine as A _{2A} Receptor Antagonists. ACS Omega, 2021, 6, 4386-4394.	3.5	7
27	Modified Preparation and Purification of 3-(2′,4′,6′-Trinitrobenzenyl) Amino-1,2,4-Triazole. Propellants, Explosives, Pyrotechnics, 1999, 24, 95-95.	1.6	3
28	A semisynthesis of 3'-O-ethyl-5,6-dihydrospinosyn J based on the spinosyn A aglycone. Beilstein Journal of Organic Chemistry, 2017, 13, 2603-2609.	2.2	3
29	Synthesis and properties of sildenafil isostere. Archiv Der Pharmazie, 2021, 354, e2100145.	4.1	3
30	Design and Synthesis of Hydrolytically Stable N-Nitrourea Explosives. Propellants, Explosives, Pyrotechnics, 2015, 40, 908-913.	1.6	2
31	Investigation on the hydrolytic mechanism of cucurbit[6]uril in alkaline solution. Royal Society Open Science, 2018, 5, 180038.	2.4	2
32	ZnCl ₂ -promoted domino reaction of 2-hydroxybenzonitriles with ketones for synthesis of 1,3-benzoxazin-4-ones. RSC Advances, 2021, 11, 29906-29911.	3.6	2
33	Design and synthesis of fiveâ€membered heterocyclic derivatives of istradefylline with comparable pharmacological activity. Chemical Biology and Drug Design, 2022, 100, 534-552.	3.2	2
34	A novel semi-synthesis of spinetoram-J based on the selective hydrolysis of 5,6-dihydro spinosyn A. Natural Product Research, 2019, 33, 2801-2808.	1.8	1