List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8844434/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tri- <i>s</i> -triazine-Based Crystalline Graphitic Carbon Nitrides for Highly Efficient Hydrogen Evolution Photocatalysis. ACS Catalysis, 2016, 6, 3921-3931.	11.2	756
2	Monolayered Bi2WO6 nanosheets mimicking heterojunction interface with open surfaces for photocatalysis. Nature Communications, 2015, 6, 8340.	12.8	578
3	Ionothermal Synthesis of Triazine–Heptazineâ€Based Copolymers with Apparent Quantum Yields of 60 % at 420â€nm for Solar Hydrogen Production from "Sea Water― Angewandte Chemie - International Edition, 2018, 57, 9372-9376.	13.8	369
4	Photocatalytic Oxygen Evolution from Functional Triazineâ€Based Polymers with Tunable Band Structures. Angewandte Chemie - International Edition, 2018, 57, 470-474.	13.8	278
5	Reducing the Exciton Binding Energy of Donor–Acceptorâ€Based Conjugated Polymers to Promote Chargeâ€Induced Reactions. Angewandte Chemie - International Edition, 2019, 58, 10236-10240.	13.8	278
6	Ultrasmall MoO _x Clusters as a Novel Cocatalyst for Photocatalytic Hydrogen Evolution. Advanced Materials, 2019, 31, e1804883.	21.0	222
7	Insight into the effect of morphology on catalytic performance of porous CeO2 nanocrystals for H2S selective oxidation. Applied Catalysis B: Environmental, 2019, 252, 98-110.	20.2	213
8	Photocatalytic overall water splitting by conjugated semiconductors with crystalline poly(triazine) Tj ETQq0 0 0 rg	gBT /Overl 7.4	ock 10 Tf 50
9	Acid and Base Resistant Zirconium Polyphenolateâ€Metalloporphyrin Scaffolds for Efficient CO ₂ Photoreduction. Advanced Materials, 2018, 30, 1704388.	21.0	184
	Direct probing of atomically dispersed Ru species over multi-edged TiO ₂ for highly		

10	efficient photocatalytic hydrogen evolution. Science Advances, 2020, 6, .	10.3	161
11	A Theoretical Study on the Electronic Structures of TiO2:Â Effect of Hartreeâ `Fock Exchange. Journal of Physical Chemistry B, 2005, 109, 19270-19277.	2.6	135
12	A Tumor-pH-Responsive Supramolecular Photosensitizer for Activatable Photodynamic Therapy with Minimal <i>In Vivo</i> Skin Phototoxicity. Theranostics, 2017, 7, 2746-2756.	10.0	117
13	Nanofibers with diameter below one nanometer from electrospinning. RSC Advances, 2018, 8, 4794-4802.	3.6	117
14	Role of Spacers and Substituents in the Self-Assembly Process:  Syntheses and Characterization of Three Novel Silver(I)/Iodine Polymers. Crystal Growth and Design, 2006, 6, 1813-1820.	3.0	115
15	How does the B,F-monodoping and B/F-codoping affect the photocatalytic water-splitting performance of g-C ₃ N ₄ ?. Physical Chemistry Chemical Physics, 2016, 18, 19217-19226.	2.8	99
16	A Fully Coplanar Donor–Acceptor Polymeric Semiconductor with Promoted Charge Separation Kinetics for Photochemistry. Angewandte Chemie - International Edition, 2021, 60, 16355-16359.	13.8	94
17	Comparative density functional theory study on the electronic and optical properties of BiMO4 (M =) Tj ETQq1 1	0.784314 10.3	rgBT /Ove

Highly Efficient Porous Fe<i>_x</i>Ce_{1â€"<i>x</i>}O_{2â^{^1}Î'} with
Three-Dimensional Hierarchical Nanoflower Morphology for H₂S-Selective Oxidation.
ACS Catalysis, 2020, 10, 3968-3983.

11.2 78

#	Article	IF	CITATIONS
19	Construction of Fe-doped TiO2â^'x ultrathin nanosheets with rich oxygen vacancies for highly efficient oxidation of H2S. Chemical Engineering Journal, 2022, 430, 132917.	12.7	77
20	Photocatalytic Oxygen Evolution from Functional Triazineâ€Based Polymers with Tunable Band Structures. Angewandte Chemie, 2018, 130, 479-483.	2.0	75
21	MnSb ₂ S ₄ Monolayer as an Anode Material for Metal-Ion Batteries. Chemistry of Materials, 2018, 30, 3208-3214.	6.7	74
22	lonothermal Synthesis of Triazine–Heptazineâ€Based Copolymers with Apparent Quantum Yields of 60 % at 420 nm for Solar Hydrogen Production from "Sea Water― Angewandte Chemie, 2018, 130, 9516-952	0 ^{2.0}	73
23	First-Principles Studies of Lithium Adsorption and Diffusion on Graphene with Grain Boundaries. Journal of Physical Chemistry C, 2014, 118, 28055-28062.	3.1	70
24	Computational design of inorganic nonlinear optical crystals based on a genetic algorithm. CrystEngComm, 2014, 16, 10569-10580.	2.6	67
25	Ionothermal Synthesis of Covalent Triazine Frameworks in a NaClâ€KClâ€ZnCl ₂ Eutectic Salt for the Hydrogen Evolution Reaction. Angewandte Chemie - International Edition, 2022, 61, .	13.8	67
26	1T-MoS2 monolayer as a promising anode material for (Li/Na/Mg)-ion batteries. Applied Surface Science, 2022, 584, 152537.	6.1	66
27	Defect engineering of metal–oxide interface for proximity of photooxidation and photoreduction. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 10232-10237.	7.1	63
28	Controllable P Doping of the LaCoO ₃ Catalyst for Efficient Propane Oxidation: Optimized Surface Co Distribution and Enhanced Oxygen Vacancies. ACS Applied Materials & Interfaces, 2020, 12, 23789-23799.	8.0	61
29	Promoting effect of Cu-doping on catalytic activity and SO2 resistance of porous CeO2 nanorods for H2S selective oxidation. Journal of Catalysis, 2020, 389, 382-399.	6.2	59
30	Electronic properties and 4f → 5d transitions in Ce-doped Lu2SiO5: a theoretical investigation. Journal of Materials Chemistry, 2012, 22, 13723.	6.7	53
31	Density Functional Theory Study of Single-Atom V, Nb, and Ta Catalysts on Graphene and Carbon Nitride for Selective Nitrogen Reduction. ACS Applied Nano Materials, 2020, 3, 5149-5159.	5.0	51
32	Atomically Dispersed Ru Catalyst for Low-Temperature Nitrogen Activation to Ammonia via an Associative Mechanism. ACS Catalysis, 2020, 10, 9504-9514.	11.2	47
33	Whether Corrugated or Planar Vacancy Graphene-like Carbon Nitride (g-C ₃ N ₄) Is More Effective for Nitrogen Reduction Reaction?. Journal of Physical Chemistry C, 2019, 123, 17296-17305.	3.1	46
34	Bond-Curvature Effect of Sidewall [2+1] Cycloadditions of Single-Walled Carbon Nanotubes:  A New Criterion To the Adduct Structures. Chemistry of Materials, 2006, 18, 3579-3584.	6.7	43
35	Theoretical studies of SiC van der Waals heterostructures as anodes of Li-ion batteries. Applied Surface Science, 2021, 563, 150269.	6.1	43
36	Highly Active and Sulfurâ€Resistant Fe–N ₄ Sites in Porous Carbon Nitride for the Oxidation of H ₂ S into Elemental Sulfur. Small, 2020, 16, e2003904.	10.0	41

#	Article	IF	CITATIONS
37	A Theoretical Study on the Structural and Energy Spectral Properties of Ce ³⁺ lons Doped in Various Fluoride Compounds. Journal of Physical Chemistry C, 2012, 116, 20513-20521.	3.1	39
38	A comparative study of CO catalytic oxidation on Pd-anchored graphene oxide and Pd-embedded vacancy graphene. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	38
39	First-principles investigation of the activation of CO2 molecule on TM/Cu (TM=Fe, Co and Ni) surface alloys. Applied Surface Science, 2015, 353, 902-912.	6.1	38
40	Facile fabrication of shape-controlled Co _x Mn _y O _β nanocatalysts for benzene oxidation at low temperatures. Chemical Communications, 2018, 54, 2154-2157.	4.1	37
41	Effects of ligand functionalization on the photocatalytic properties of titanium-based MOF: A density functional theory study. AIP Advances, 2018, 8, .	1.3	35
42	Structural and Electronic Properties of a W ₃ O ₉ Cluster Supported on the TiO ₂ (110) Surface. Journal of Physical Chemistry C, 2009, 113, 17509-17517.	3.1	34
43	Energetic, Optical, and Electronic Properties of Intrinsic Electron-Trapping Defects in YAIO ₃ : A Hybrid DFT Study. Journal of Physical Chemistry C, 2014, 118, 19940-19947.	3.1	34
44	Iron-Based Metal–Organic Frameworks as Platform for H ₂ S Selective Conversion: Structure-Dependent Desulfurization Activity. Inorganic Chemistry, 2020, 59, 4483-4492.	4.0	34
45	Electronic properties of red and black phosphorous and their potential application as photocatalysts. RSC Advances, 2016, 6, 80872-80884.	3.6	33
46	Preadsorption of O ₂ on the Exposed (001) Facets of ZnO Nanostructures for Enhanced Sensing of Gaseous Acetone. ACS Applied Nano Materials, 2019, 2, 6144-6151.	5.0	33
47	Phthalocyanine and Metal Phthalocyanines Adsorbed on Graphene: A Density Functional Study. Journal of Physical Chemistry C, 2019, 123, 16614-16620.	3.1	33
48	Oxygen-vacancies-engaged efficient carrier utilization for the photocatalytic coupling reaction. Journal of Catalysis, 2019, 373, 116-125.	6.2	33
49	Screening novel candidates for mid-IR nonlinear optical materials from I ₃ –V–VI ₄ compounds. Journal of Materials Chemistry C, 2017, 5, 1963-1972.	5.5	32
50	Reducing the Exciton Binding Energy of Donor–Acceptorâ€Based Conjugated Polymers to Promote Chargeâ€Induced Reactions. Angewandte Chemie, 2019, 131, 10342-10346.	2.0	32
51	What Is the Best Size of Subnanometer Copper Clusters for CO ₂ Conversion to Methanol at Cu/TiO ₂ Interfaces? A Density Functional Theory Study. Journal of Physical Chemistry C, 2019, 123, 24118-24132.	3.1	32
52	Relative Efficacy of Coâ^'X ₄ Embedded Graphene (X=N, S, B, and P) Electrocatalysts towards Hydrogen Evolution Reaction: Is Nitrogen Really the Best Choice?. ChemCatChem, 2020, 12, 536-543.	3.7	32
53	Germanium and iron double-substituted ZnGa2O4 solid-solution photocatalysts with modulated band structure for boosting photocatalytic CO2 reduction with H2O. Applied Catalysis B: Environmental, 2020, 265, 118551.	20.2	31
54	Asymmetric Acceptor–Donor–Acceptor Polymers with Fast Charge Carrier Transfer for Solar Hydrogen Production. Chemistry - A European Journal, 2021, 27, 939-943.	3.3	31

#	Article	IF	CITATIONS
55	Unraveling the mechanisms of S-doped carbon nitride for photocatalytic oxygen reduction to H ₂ O ₂ . Physical Chemistry Chemical Physics, 2020, 22, 21099-21107.	2.8	29
56	Effects of doping high-valence transition metal (V, Nb and Zr) ions on the structure and electrochemical performance of LIB cathode material LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ . Physical Chemistry Chemical Physics, 2021, 23, 11528-11537.	2.8	29
57	Carbon Nanotubes Functionalized by NO2:Â Coexistence of Charge Transfer and Radical Transfer. Journal of Physical Chemistry B, 2006, 110, 22462-22470.	2.6	28
58	Structural and electronic properties of tungsten trioxides: from cluster to solid surface. Theoretical Chemistry Accounts, 2011, 130, 103-114.	1.4	28
59	Blue-AsP monolayer as a promising anode material for lithium- and sodium-ion batteries: a DFT study. Physical Chemistry Chemical Physics, 2021, 23, 5143-5151.	2.8	28
60	Electrocatalytic Nitrogen Reduction by Transition Metal Single-Atom Catalysts on Polymeric Carbon Nitride. Journal of Physical Chemistry C, 2021, 125, 13880-13888.	3.1	28
61	Single-Crystalline Covalent Organic Frameworks as High-Performance Liquid Chromatographic Stationary Phases for Positional Isomer Separation. ACS Applied Materials & Interfaces, 2022, 14, 9754-9762.	8.0	28
62	Subnanometer iron clusters confined in a porous carbon matrix for highly efficient zinc–air batteries. Nanoscale Horizons, 2020, 5, 359-365.	8.0	27
63	Nitrogen fixation on metal-free SiC(111) polar surfaces. Journal of Materials Chemistry A, 2020, 8, 7412-7421.	10.3	26
64	High electrocatalytic performance of graphene nanoribbon supported PtAu nanoalloy for direct ethanol fuel cell and theoretical analysis of anti-CO poisoning. Electrochimica Acta, 2016, 187, 560-566.	5.2	23
65	Efficient ammonia synthesis over a core–shell Ru/CeO ₂ catalyst with a tunable CeO ₂ size: DFT calculations and XAS spectroscopy studies. Inorganic Chemistry Frontiers, 2019, 6, 396-406.	6.0	23
66	Germanium-substituted Zn2TiO4 solid solution photocatalyst for conversion of CO2 into fuels. Journal of Catalysis, 2019, 371, 144-152.	6.2	23
67	A New Candidate in Polyanionic Compounds for a Potassium-Ion Battery Cathode: KTiOPO ₄ . Journal of Physical Chemistry Letters, 2021, 12, 2721-2726.	4.6	23
68	Energy Band Alignment and Redoxâ€Active Sites in Metalloporphyrinâ€Spaced Metalâ€Catechol Frameworks for Enhanced CO ₂ Photoreduction. Angewandte Chemie - International Edition, 2022, 61, .	13.8	23
69	First-Principles Study on Structural Properties and 4f → 5d Transitions of Locally Charge-Compensated Ce ³⁺ in CaF ₂ . Journal of Physical Chemistry C, 2012, 116, 18419-18426.	3.1	22
70	Toward improving CO2 dissociation and conversion to methanol via CO-hydrogenation on Cu(100) surface by introducing embedded Co nanoclusters as promoters: A DFT study. Applied Surface Science, 2018, 427, 837-847.	6.1	22
71	BC ₂ N/Graphene Heterostructure as a Promising Anode Material for Rechargeable Li-Ion Batteries by Density Functional Calculations. Journal of Physical Chemistry C, 2019, 123, 30809-30818.	3.1	22
72	Understanding the Linear and Second-Order Nonlinear Optical Properties of UiO-66-Derived Metal–Organic Frameworks: A Comprehensive DFT Study. Journal of Physical Chemistry C, 2020, 124, 11595-11608.	3.1	22

#	Article	IF	CITATIONS
73	The effects of the introduction of Al atom into monoclinic BiVO4: a theoretical prediction. Theoretical Chemistry Accounts, 2010, 127, 751-757.	1.4	21
74	Probing the Smallest Molecular Model of MoS ₂ Catalyst: S ₂ Units in the MoS _{<i>n</i>} ^{–/0} (<i>n</i> = 1–5) Clusters. Journal of Physical Chemistry A, 2013, 117, 5632-5641.	2.5	21
75	Different Atomic Terminations Affect the Photocatalytic Nitrogen Fixation of Bismuth Oxybromide: A First Principles Study. Chemistry - an Asian Journal, 2018, 13, 799-808.	3.3	21
76	UiO-66 Metal–Organic Framework as an Anode for a Potassium-Ion Battery: Quantum Mechanical Analysis. Journal of Physical Chemistry C, 2021, 125, 9679-9687.	3.1	21
77	First-Principles Study on Electronic Properties and Optical Spectra of Ce-Doped La ₂ CaB ₁₀ O ₁₉ Crystal. Journal of Physical Chemistry C, 2013, 117, 15241-15246.	3.1	20
78	Insight into the Mechanism of CO Oxidation on WO3(001) Surfaces for Gas Sensing: A DFT Study. Sensors, 2017, 17, 1898.	3.8	20
79	H ₂ and CH ₄ production from bio-alcohols using condensed poly(heptazine) Tj ETQq1 1	l 0.78431 10.3	4 rgBT /Ove 20
80	Molecular-level understanding of reaction path optimization as a function of shape concerning the metal–support interaction effect of Co/CeO ₂ on water-gas shift catalysis. Catalysis Science and Technology, 2019, 9, 4928-4937.	4.1	19
81	A boron-decorated melon-based carbon nitride as a metal-free photocatalyst for N ₂ fixation: a DFT study. Physical Chemistry Chemical Physics, 2020, 22, 21872-21880.	2.8	18
82	S Adsorption at Regular and Defect Sites of the MgO (001) Surface: Cluster Model Study at DFT Level. Surface Review and Letters, 2003, 10, 691-695.	1.1	17
83	Visible-light-driven selective alcohol dehydrogenation and hydrogenolysis <i>via</i> the Mott Schottky effect. Journal of Materials Chemistry A, 2020, 8, 6854-6862.	10.3	17
84	Indium selenide monolayer: a two-dimensional material with strong second harmonic generation. CrystEngComm, 2018, 20, 2573-2582. First principles calculations of photohuminescence and defect states of similarith	2.6	16
85	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi mathvariant="normal">C <mml:msup> <mml:mrow> <mml:mi mathvariant="normal">e </mml:mi </mml:mrow> <mml:mrow> <mml:mn>3</mml:mn> <mml:mo> + </mml:mo> -doped <mml:math< td=""><td>nml:mrow</td><td>//////////////////////////////////////</td></mml:math<></mml:mrow></mml:msup></mml:mi </mml:mrow>	nml:mrow	//////////////////////////////////////

#	Article	IF	Citations
91	Defective BC ₂ N as an Anode Material with Improved Performance for Lithium-Ion Batteries. Journal of Physical Chemistry C, 2021, 125, 4946-4954.	3.1	15
92	Insight into the mechanism for the methanol synthesis via the hydrogenation of CO2 over a Co-modified Cu(100) surface: A DFT study. Journal of Chemical Physics, 2016, 145, 134701.	3.0	14
93	Exploring the Reaction Mechanism of H ₂ S Decomposition with MS ₃ (M = Mo,) Tj ETQc	1 1 0.784 3.5	314 rgBT / <mark>O</mark>
94	Lithiation Abilities of SiC Bulks and Surfaces: A First-Principles Study. Journal of Physical Chemistry C, 2020, 124, 7031-7038.	3.1	13
95	Catalytic oxidation of CO by N ₂ O on neutral Y ₂ MO ₅ (M = Y, Al) clusters: a density functional theory study. RSC Advances, 2015, 5, 76651-76659.	3.6	12
96	Predicting the electronic and optical properties of IB metals doped monoclinic BiVO ₄ : First principle calculations. International Journal of Quantum Chemistry, 2016, 116, 388-395.	2.0	12
97	Why does F-doping enhance the photocatalytic water-splitting performance of mBiVO ₄ ? – a density functional theory study. New Journal of Chemistry, 2017, 41, 1094-1102.	2.8	12
98	Structure, Composition, and Electronic Properties of TiOx/Mo(112) Thin Films. Journal of Physical Chemistry C, 2007, 111, 7437-7445.	3.1	11
99	High magneto-optical performance of GdFeO3 thin film with high orientation and heavy Ce3+ doping. Ceramics International, 2019, 45, 14928-14933.	4.8	11
100	Conversion of N ₂ O to N ₂ on MgO (001) surface with vacancy: A DFT study. Chinese Journal of Chemistry, 2003, 21, 1123-1129.	4.9	10
101	Pressure-tuning the nonlinear-optical properties of AgGaS_2 crystal: a first-principle study. Optical Materials Express, 2015, 5, 1738.	3.0	10
102	The structural, electronic and catalytic properties of Au _n (n = 1–4) nanoclusters on monolayer MoS ₂ . RSC Advances, 2017, 7, 42529-42540.	3.6	10
103	Anionic Oxygen Redox in the High-Lithium Material Li ₈ SnO ₆ . Chemistry of Materials, 2021, 33, 834-844.	6.7	10
104	Tailoring the Linear and Second-Order Nonlinear Optical Responses of the Titanium-MIL-125 Metal–Organic Framework through Ligand Functionalization: A First Principles Study. Journal of Physical Chemistry C, 2019, 123, 653-664.	3.1	9
105	Investigation of Ordered TiMC and TiMCT ₂ (M = Cr and Mo; T = O and S) MXenes as High-Performance Anode Materials for Lithium-Ion Batteries. Journal of Physical Chemistry C, 2022, 126, 5283-5291.	3.1	9
106	Deposition of Nonstoichiometric Tritungsten Oxides on the TiO ₂ (110) Surface: A Possible Way to Stabilize the Unstable Clusters in the Gas Phase. Journal of Physical Chemistry C, 2011, 115, 15335-15344.	3.1	8
107	On the structural and electronic properties of hexanuclear vanadium oxide clusters V6Onâ^'/0 (n=12–15): Is V6O12 cluster planar or cage-like?. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 131, 446-454.	3.9	8
108	Structural Evolution and Chemical Bonding of Diniobium Boride Clusters Nb ₂ B <i>_x</i> ^{–/0} (<i>x </i> = 1–6): Hexagonalâ€Bipyramidal Nb ₂ B ₆ ^{–/0} Species. European Journal of Inorganic Chemistry, 2018, 2018, 940-950.	2.0	8

#	Article	IF	CITATIONS
109	First-principles studies of the TE properties of [110]-Ge/Si core/shell nanowires with different surface structures. Journal of Materials Chemistry A, 2014, 2, 2538.	10.3	7
110	The reactivity of stoichiometric tungsten oxide clusters towards carbon monoxide: the effects of cluster sizes and charge states. Physical Chemistry Chemical Physics, 2015, 17, 11499-11508.	2.8	7
111	The mechanism for CO2 reduction over Fe-modified Cu(100) surfaces with thermodynamics and kinetics: a DFT study. RSC Advances, 2020, 10, 32569-32580.	3.6	7
112	Single-phase proton- and electron-conducting Ag-organic coordination polymers for efficient CO ₂ electroreduction. Journal of Materials Chemistry A, 2022, 10, 3216-3225.	10.3	7
113	Ionothermal Synthesis of Covalent Triazine Frameworks in a NaClâ€KClâ€ZnCl ₂ Eutectic Salt for the Hydrogen Evolution Reaction. Angewandte Chemie, 2022, 134, .	2.0	7
114	Theoretical study on Y-doped Na ₂ ZrO ₃ as a high-capacity Na-rich cathode material based on anionic redox. Physical Chemistry Chemical Physics, 2022, 24, 16183-16192.	2.8	7
115	Effects of Ti doping at the reduced SnO2(110) surface with different oxygen vacancies: a first principles study. Theoretical Chemistry Accounts, 2012, 131, 1.	1.4	6
116	Mononuclear thorium halide clusters ThX ₄ (X = F, Cl): gas-phase hydrolysis reactions. Physical Chemistry Chemical Physics, 2018, 20, 21184-21193.	2.8	6
117	Theoretical insights into the thermal reduction of N2 to NH3 over a single metal atom incorporated nitrogen-doped graphene. Journal of Chemical Physics, 2021, 154, 054703.	3.0	6
118	A Fully Coplanar Donor–Acceptor Polymeric Semiconductor with Promoted Charge Separation Kinetics for Photochemistry. Angewandte Chemie, 2021, 133, 16491-16495.	2.0	6
119	Unveiling the Selectivity of CO ₂ Reduction on Cu ₂ ZnSnS ₄ : The Effect of Exposed Termination. Journal of Physical Chemistry C, 2021, 125, 24967-24973.	3.1	6
120	Validation of Density Functional Theory Methods for Predicting the Optical Properties of Cu-Based Multinary Chalcogenide Semiconductors. Journal of Physical Chemistry C, 2022, 126, 4684-4697.	3.1	6
121	DFT investigations of KTiOPO4M <i>x</i> (M = K, Na, and Li) anodes for alkali-ion battery. Journal of Chemical Physics, 2022, 156, .	3.0	6
122	Microscopic functionality of FeN4 sites in polymeric carbon nitride for efficient H2S oxidation. Applied Surface Science, 2022, 600, 154011.	6.1	6
123	Hybrid Density Functional Study of the Local Structures and Energy Levels of CaAl ₂ O ₄ :Ce ³⁺ . Journal of Physical Chemistry A, 2018, 122, 4306-4312.	2.5	5
124	Structural design of cubic Sr,V:CeFeO3 thin films with a strong magneto-optical effect and high compatibility with a Si substrate. Dalton Transactions, 2020, 49, 7713-7721.	3.3	5
125	High efficiency and stable photoluminescence of CH ₃ NH ₃ PbBr ₃ @CsPbBr ₃ perovskite quantum dots. Chemical Communications, 2021, 57, 1356-1359.	4.1	5
126	Understanding the Role of Various Dopant Metals (Sb, Sn, Ga, Ge, and V) in the Structural and Electrochemical Performances of LiNi _{0.5} Co _{0.2} Mn _{0.3} O ₂ . Journal of Physical Chemistry C, 2021, 125, 19600-19608.	3.1	5

#	Article	IF	CITATIONS
127	Potassium Storage Performance of UiO-66 Derivatives from First Principles Calculations. Journal of Physical Chemistry C, 2022, 126, 4286-4295.	3.1	5
128	Density Functional Study on Structures and Relative Stability of Gd(H2O) <i>n</i> 3+ (<i>n</i> = 8,9). Chinese Journal of Chemical Physics, 2009, 22, 395-400.	1.3	4
129	A reasonable criterion of reactivities at the defective region of singleâ€walled carbon nanotubes. International Journal of Quantum Chemistry, 2009, 109, 668-678.	2.0	4
130	Structural evolution, sequential oxidation and chemical bonding in tri-yttrium oxide clusters: Y ₃ O _x ^{â^'} and Y ₃ O _x (x = 0–6). RSC Advances, 2014, 4, 60270-60279.	3.6	4
131	Tuning the charge states of CrW2O9 clusters deposited on perfect and defective MgO(001) surfaces with different color centers: A comprehensive DFT study. Journal of Chemical Physics, 2016, 144, 174706.	3.0	4
132	Mild preparation and high fluorescence emission efficiency of europium-doped gallium nitride nanocrystals and first-principles density functional theoretical analysis of optical properties. Journal of Materials Chemistry C, 2017, 5, 7904-7910.	5.5	4
133	Theoretical Insights into Synergistic Effects at Cu/TiC Interfaces for Promoting CO2 Activation. ACS Omega, 2021, 6, 27259-27270.	3.5	4
134	Zn ₂ Sn _{<i>x</i>} Ti _{1–<i>x</i>} O ₄ Continuous Solid-Solution Photocatalyst for Efficient Photocatalytic CO ₂ Conversion into Solar Fuels. ACS Applied Energy Materials, 2022, 5, 3748-3756.	5.1	4
135	Highly fluorescent carbon nitride oligomer with aggregation-induced emission characteristic for plastic staining. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 276, 121238.	3.9	4
136	Group VB transition metal oxide clusters M4O n â^'/0 (MÂ=ÂNb, Ta; nÂ=Â8–11): structural evolution and chemical bonding. Theoretical Chemistry Accounts, 2014, 133, 1.	1.4	3
137	Curvature effect of vacancies in single-walled carbon nanotubes. Surface Science, 2015, 633, 29-37.	1.9	3
138	Structures and Chemical Bonding in NbS n 2â^'/â~'/0 (nÂ=Â3–5) Clusters: Effects of Sulfur Content and Charge States. Journal of Cluster Science, 2016, 27, 387-401.	3.3	3
139	A DFT study of (WO3)3 nanoclusters adsorption on defective MgO ultrathin films on Ag(001). RSC Advances, 2017, 7, 54091-54099.	3.6	3
140	Understanding the Efficiency and Selectivity of Two-Electron Production of Metalloporphyrin-Embedded Zirconium–Pyrogallol Scaffolds in Electrochemical CO2 Reduction. ACS Applied Materials & Interfaces, 2020, 12, 52588-52594.	8.0	3
141	Energy Band Alignment and Redoxâ€Active Sites in Metalloporphyrinâ€5paced Metal atechol Frameworks for Enhanced CO ₂ Photoreduction. Angewandte Chemie, 2022, 134, .	2.0	3
142	Bisimidazolium Tungstate Ionic Liquids: Highly Efficient Catalysts for the Synthesis of Linear Organic Carbonates by the Reaction of Ethylene Carbonate with Alcohols. Catalysis Letters, 2023, 153, 62-73.	2.6	3
143	A chemical-bond-driven edge reconstruction of Sb nanoribbons and their thermoelectric properties from first-principles calculations. RSC Advances, 2019, 9, 1047-1054.	3.6	2
144	Title is missing!. Journal of Cluster Science, 1999, 10, 459-473.	3.3	1

#	Article	IF	CITATIONS
145	Density Functional Study on Relative Energies, Structures, and Bonding of Low-lying Electronic States of Lutetium Dimer. Chinese Journal of Chemical Physics, 2009, 22, 371-379.	1.3	1
146	Electronic Properties and Chemical Bonding of O-Rich Clusters MM′O7 â^' (M, M′Â=ÂV, Nb, Ta). Journal of Cluster Science, 2011, 22, 397-404.	3.3	1
147	Theoretical Design of Layered AlGaS3 as a New Nonlinear Optical Material with a Strong Second Harmonic Generation Response. Crystal Growth and Design, 2019, 19, 1632-1639.	3.0	1
148	Tailoring nonlinear optical crystal borophosphate through the introduction of transition metal d orbitals for improving optical anisotropy and SHG response: a first-principles investigation. Materials Research Express, 2018, 5, 096204.	1.6	0
149	Growth, structure and defects of (La,Sr)(Al,Ta)O3 crystals for preparing BiFeO3 thin films. Dalton Transactions, 2021, 50, 13306-13311.	3.3	Ο