List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8844357/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Epitheliocystis in Greater Amberjack: Evidence of a Novel Causative Agent, Pathology, Immune Response and Epidemiological Findings. Microorganisms, 2022, 10, 627.	1.6	2
2	Iron Regulation in Elderly Asian Elephants (Elephas maximus) Chronically Infected With Mycobacterium tuberculosis. Frontiers in Veterinary Science, 2020, 7, 596379.	0.9	4
3	Genomic and epidemiological insights into chlamydial epitheliocystis. Access Microbiology, 2019, 1, .	0.2	0
4	Metagenomic Analysis of Fish-Associated Ca. Parilichlamydiaceae Reveals Striking Metabolic Similarities to the Terrestrial Chlamydiaceae. Genome Biology and Evolution, 2018, 10, 2587-2595.	1.1	5
5	Ca. Endozoicomonas cretensis: A Novel Fish Pathogen Characterized by Genome Plasticity. Genome Biology and Evolution, 2018, 10, 1363-1374.	1.1	10
6	Cultureâ€independent genomics of a novel chlamydial pathogen of fish provides new insight into hostâ€specific adaptations utilized by these intracellular bacteria. Environmental Microbiology, 2017, 19, 1899-1913.	1.8	31
7	Investigations into the temporal development of epitheliocystis infections in brown trout: a histological study. Journal of Fish Diseases, 2017, 40, 811-819.	0.9	4
8	Ca. Similichlamydia in Epitheliocystis Co-infection of Gilthead Seabream Gills: Unique Morphological Features of a Deep Branching Chlamydial Family. Frontiers in Microbiology, 2017, 8, 508.	1.5	16
9	A Zebrafish Model for Chlamydia Infection with the Obligate Intracellular Pathogen Waddlia chondrophila. Frontiers in Microbiology, 2016, 7, 1829.	1.5	5
10	Epitheliocystis Distribution and Characterization in Brown Trout (Salmo trutta) from the Headwaters of Two Major European Rivers, the Rhine and Rhone. Frontiers in Physiology, 2016, 7, 131.	1.3	12
11	Host-Associated Genomic Features of the Novel Uncultured Intracellular PathogenCa.Ichthyocystis Revealed by Direct Sequencing of Epitheliocysts. Genome Biology and Evolution, 2016, 8, 1672-1689.	1.1	12
12	The emergence of epitheliocystis in the upper Rhone region: evidence for Chlamydiae in wild and farmed salmonid populations. Archives of Microbiology, 2016, 198, 315-324.	1.0	14
13	Emerging pathogens of gilthead seabream: characterisation and genomic analysis of novel intracellular β-proteobacteria. ISME Journal, 2016, 10, 1791-1803.	4.4	34
14	Environmental marine pathogen isolation using mesocosm culture of sharpsnout seabream: striking genomic and morphological features of novel Endozoicomonas sp Scientific Reports, 2015, 5, 17609.	1.6	60
15	Twenty years of research into Chlamydia-like organisms: a revolution in our understanding of the biology and pathogenicity of members of the phylum Chlamydiae. Pathogens and Disease, 2015, 73, 1-15.	0.8	112
16	Evaluation of zebrafish as a model to study the pathogenesis of the opportunistic pathogen <i>Cronobacter turicensis</i> . Emerging Microbes and Infections, 2015, 4, 1-9.	3.0	31
17	Immunohistochemical expression of Bax and Bak in canine non-neoplastic tissues. Veterinary Journal, 2013, 198, 131-140.	0.6	3
18	Immunohistochemical Expression Study of Proapoptotic BH3-Only Protein Bad in Canine Nonneoplastic Tissues and Canine Lymphomas. Veterinary Pathology, 2013, 50, 789-796.	0.8	5

#	Article	IF	CITATIONS
19	Candidatus Syngnamydia Venezia, a Novel Member of the Phylum Chlamydiae from the Broad Nosed Pipefish, Syngnathus typhle. PLoS ONE, 2013, 8, e70853.	1.1	43
20	Evidence for Chlamydia in Wild Mammals of the Serengeti. Journal of Wildlife Diseases, 2012, 48, 1074-1078.	0.3	13
21	A natural freshwater origin for two chlamydial species, <i>Candidatus</i> Piscichlamydia salmonis and <i>Candidatus</i> Clavochlamydia salmonicola, causing mixed infections in wild brown trout (<i>Salmo trutta</i>). Environmental Microbiology, 2012, 14, 2048-2057.	1.8	39
22	Health of farmed fish: its relation to fish welfare and its utility as welfare indicator. Fish Physiology and Biochemistry, 2012, 38, 85-105.	0.9	172
23	Chlamydia abortus YhbZ, a truncated Obg family GTPase, associates with the Escherichia coli large ribosomal subunit. Microbial Pathogenesis, 2011, 50, 200-206.	1.3	12
24	Health of farmed fish: its relation to fish welfare and its utility as welfare indicator. , 2011, , 85-105.		0
25	Novel Chlamydiales associated with epitheliocystis in a leopard shark Triakis semifasciata. Diseases of Aquatic Organisms, 2010, 91, 75-81.	0.5	34
26	The Waddlia Genome: A Window into Chlamydial Biology. PLoS ONE, 2010, 5, e10890.	1.1	104
27	Molecular evidence for chlamydial infections in the eyes of sheep. Veterinary Microbiology, 2009, 135, 142-146.	0.8	49
28	Predator or prey? Chlamydophila abortus infections of a free-living amoebae, Acanthamoeba castellani 9GU. Microbes and Infection, 2008, 10, 591-597.	1.0	8
29	Chlamydophila pneumoniae HflX belongs to an uncharacterized family of conserved GTPases and associates with the Escherichia coli 50S large ribosomal subunit. Microbiology (United Kingdom), 2008, 154, 3537-3546.	0.7	26
30	Chlamydiae in Free-Ranging and Captive Frogs in Switzerland. Veterinary Pathology, 2007, 44, 144-150.	0.8	46
31	Introduction to the Swiss Way of Teaching Veterinary Pathology in the Twenty-First Century: Application of e-Learning Modules. Journal of Veterinary Medical Education, 2007, 34, 445-449.	0.4	7
32	Intensively Kept Pigs Preâ€disposed to Chlamydial Associated Conjunctivitis. Transboundary and Emerging Diseases, 2007, 54, 307-313.	0.6	33
33	Chlamydia-related abortions in Cattle from Graubunden, Switzerland. Veterinary Pathology, 2006, 43, 702-708.	0.8	73
34	Differential expression of chlamydial signal transduction genes in normal and interferon gamma-induced persistent Chlamydophila pneumoniae infections. Microbes and Infection, 2006, 8, 61-72.	1.0	27
35	Chlamydiales in Guinea-pigs and Their Zoonotic Potential. Transboundary and Emerging Diseases, 2006, 53, 185-193.	0.6	55
36	Gene Expression in Synovial Membrane Cells After Intraarticular Delivery of Plasmid-Linked Superparamagnetic Iron Oxide Particles—A Preliminary Study in Sheep. Journal of Nanoscience and Nanotechnology, 2006, 6, 2841-2852.	0.9	18

#	Article	IF	CITATIONS
37	Systemic Distribution and Elimination of Plain and with Cy3.5 Functionalized Poly(vinyl alcohol) Coated Superparamagnetic Maghemite Nanoparticles After Intraarticular Injection in Sheep In Vivo. Journal of Nanoscience and Nanotechnology, 2006, 6, 3261-3268.	0.9	20
38	Uptake and Biocompatibility of Functionalized Poly(vinylalcohol) Coated Superparamagnetic Maghemite Nanoparticles by Synoviocytes In Vitro. Journal of Nanoscience and Nanotechnology, 2006, 6, 2829-2840.	0.9	29
39	Detection of Mycobacteria and Chlamydiae in Granulomatous Inflammation of Reptiles: A Retrospective Study. Veterinary Pathology, 2004, 41, 388-397.	0.8	98
40	Diagnostic investigation into the role of Chlamydiae in cases of increased rates of return to oestrus in pigs. Veterinary Record, 2004, 155, 593-596.	0.2	33
41	Detection of novel chlamydiae in cats with ocular disease. American Journal of Veterinary Research, 2003, 64, 1421-1428.	0.3	67
42	Establishment of Proliferative Cell Nuclear Antigen Gene as an Internal Reference Gene for Polymerase Chain Reaction of a Wide Range of Archival and Fresh Mammalian Tissues. Journal of Veterinary Diagnostic Investigation, 2003, 15, 585-588.	0.5	5
43	Protein Tyrosine Phosphatase α (Ptpα) and Contactin Form a Novel Neuronal Receptor Complex Linked to the Intracellular Tyrosine Kinase Fyn. Journal of Cell Biology, 1999, 147, 707-714.	2.3	108
44	Purification, crystallization and preliminary crystallographic studies of a two fibronectin type-III domain segment from chicken tenascin encompassing the heparin- and contactin-binding regions. Acta Crystallographica Section D: Biological Crystallography, 1999, 55, 1069-1073.	2.5	10
45	HNK-1 Carbohydrate-Mediated Cell Adhesion to Laminin-1 is Different from Heparin-Mediated and Sulfatide-Mediated Cell Adhesion. FEBS Journal, 1997, 246, 233-242.	0.2	40
46	Distribution pattern of tenascin-C in normal and neoplastic mesenchymal tissues. , 1997, 72, 217-224.		14
47	Binding of contactin/F11 to the fibronectin type III domains 5 and 6 of tenascin is inhibited by heparin. FEBS Letters, 1996, 389, 304-308.	1.3	16
48	Signal transduction by GPI-anchored receptors in the nervous system. Seminars in Neuroscience, 1996, 8, 397-403.	2.3	7
49	Contactin/F11 and tenascin-C co-expression in the chick retina correlates with formation of the synaptic plexiform layers. Current Eye Research, 1995, 14, 911-926.	0.7	35
50	Tenascin-C Binds Heparin by Its Fibronectin Type III Domain Five. Journal of Biological Chemistry, 1995, 270, 4619-4623.	1.6	36
51	The Glypiated Neuronal Cell Adhesion Molecule Contactin/F11 Complexes with src-Family Protein Tyrosine Kinase Fyn. Molecular and Cellular Neurosciences, 1995, 6, 263-279.	1.0	79
52	Versican is selectively expressed in embryonic tissues that act as barriers to neural crest cell migration and axon outgrowth. Development (Cambridge), 1995, 121, 2303-2312.	1.2	224
53	Cellular Receptors for Tenascin1. Contributions To Nephrology, 1994, 107, 80-84.	1.1	9
54	Neuronal cell adhesion molecule contactin/F11 binds to tenascin via its immunoglobulin-like domains Journal of Cell Biology, 1992, 119, 203-213.	2.3	168

#	Article	IF	CITATIONS
55	J1/tenascin in substrate-bound and soluble form displays contrary effects on neurite outgrowth Journal of Cell Biology, 1991, 113, 1159-1171.	2.3	276
56	Tenascin <i>M r</i> 220000 isoform expression correlates with corneal cell migration. Development (Cambridge), 1991, 112, 605-614.	1.2	84
57	Tenascin Mr 220,000 isoform expression correlates with corneal cell migration. Development (Cambridge), 1991, 112, 605-14.	1.2	21
58	Cartilage contains mixed fibrils of collagen types II, IX, and XI Journal of Cell Biology, 1989, 108, 191-197.	2.3	476
59	Comparative studies of collagens in normal and keratoconus corneas. Experimental Eye Research, 1988, 46, 431-442.	1.2	79
60	D-periodic distribution of collagen type IX along cartilage fibrils Journal of Cell Biology, 1988, 106, 991-997.	2.3	342
61	Isolation and sequence analysis of the glycosaminoglycan attachment site of type IX collagen Journal of Biological Chemistry, 1988, 263, 752-756.	1.6	60
62	Isolation and sequence analysis of the glycosaminoglycan attachment site of type IX collagen. Journal of Biological Chemistry, 1988, 263, 752-6.	1.6	49
63	A major, six-armed glycoprotein from embryonic cartilage EMBO Journal, 1987, 6, 349-353.	3.5	115
64	A major, six-armed glycoprotein from embryonic cartilage. EMBO Journal, 1987, 6, 349-53.	3.5	35
65	Identification of the type IX collagen polypeptide chains. The alpha 2(IX) polypeptide carries the chondroitin sulfate chain(s) Journal of Biological Chemistry, 1986, 261, 5965-5968.	1.6	72
66	Identification of the type IX collagen polypeptide chains. The alpha 2(IX) polypeptide carries the chondroitin sulfate chain(s). Journal of Biological Chemistry, 1986, 261, 5965-8.	1.6	42
67	Type IX collagen from sternal cartilage of chicken embryo contains covalently bound glycosaminoglycans Proceedings of the National Academy of Sciences of the United States of America, 1985, 82, 2608-2612.	3.3	106
68	Type IX Collagen Identified As Proteoglycan Lt. Annals of the New York Academy of Sciences, 1985, 460, 397-398.	1.8	3
69	Proteoglycan Lt from chicken embryo sternum identified as type IX collagen. Journal of Biological Chemistry, 1985, 260, 4758-63.	1.6	73
70	Nonenzymatic glucosylation of proteins: a new and rapid solution for in vitro investigation. FEBS Letters, 1984, 173, 173-178.	1.3	8
71	$\hat{I}\pm 1$ -antitrypsin microheterogeneity. BBA - Proteins and Proteomics, 1982, 701, 339-345.	2.1	97
72	Structure and variation of human α1–antitrypsin. Nature, 1982, 298, 329-334.	13.7	665

#	Article	IF	CITATIONS
73	Human α1 -antitrypsin: carbohydrate attachment and sequence homology. FEBS Letters, 1981, 135, 301-303.	1.3	59
74	Carboxy terminal fragment of human α-1-antitrypsin from hydroxylamine clevage: Homology with antithrombin III. Biochemical and Biophysical Research Communications, 1979, 91, 1032-1037.	1.0	55