Andrea Carena

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/884414/publications.pdf

Version: 2024-02-01

136950 98798 5,361 192 32 67 h-index citations g-index papers 193 193 193 1840 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Statistical Analysis of 100 Gbps per Wavelength SWDM VCSEL-MMF Data Center Links on a Large Set of OM3 and OM4 Fibers. Journal of Lightwave Technology, 2022, 40, 1018-1026.	4.6	8
2	Optimized management of ultra-wideband photonics switching systems assisted by machine learning. Optics Express, 2022, 30, 3989.	3.4	10
3	Performance evaluation of data-driven techniques for the softwarized and agnostic management of an N×N photonic switch. , 2022, $1,1.$		6
4	Spectral and Spatial Power Evolution Design With Machine Learning-Enabled Raman Amplification. Journal of Lightwave Technology, 2022, 40, 3546-3556.	4.6	6
5	Optimal control of BeneÅ; optical networks assisted by machine learning., 2022,,.		o
6	Machine learning applied to inverse systems design. , 2022, , .		3
7	Multi–Band Programmable Gain Raman Amplifier. Journal of Lightwave Technology, 2021, 39, 429-438.	4.6	36
8	Automatic Management of $\langle i \rangle N \langle i \rangle$ $\tilde{A}-\langle i \rangle N \langle i \rangle$ Photonic Switch Powered by Machine Learning in Software-Defined Optical Transport. IEEE Open Journal of the Communications Society, 2021, 2, 1358-1365.	6.9	9
9	Joint Carrier-Phase Estimation for Digital Subcarrier Multiplexing Systems With Symbol-Rate Optimization. Journal of Lightwave Technology, 2021, 39, 6403-6412.	4.6	10
10	Experimental Characterization of Raman Amplifier Optimization Through Inverse System Design. Journal of Lightwave Technology, 2021, 39, 1162-1170.	4.6	17
11	Automatic design of NxN integrated Benes optical switch. , 2021, , .		1
12	Simultaneous gain profile design and noise figure prediction for Raman amplifiers using machine learning. Optics Letters, 2021, 46, 1157.	3.3	8
13	Machine-learning-aided abstraction of photonic integrated circuits in software-defined optical transport. , 2021, , .		2
14	Inverse design of a Raman amplifier in frequency and distance domains using convolutional neural networks. Optics Letters, 2021, 46, 2650.	3.3	7
15	Machine learning enabled Raman amplifiers. , 2021, , .		O
16	Distance and spectral power profile shaping using machine learning enabled Raman amplifiers., 2021,,.		1
17	Optimization of Raman amplifiers using machine learning. , 2021, , .		O
18	Optimization of a Hybrid EDFA-Raman C+L Band Amplifier through Neural-Network Models. , 2021, , .		3

#	Article	IF	Citations
19	Artificial Neural Network Symbol Estimator With Enhanced Robustness to Nonlinear Phase Noise. IEEE Photonics Technology Letters, 2021, 33, 1341-1344.	2.5	О
20	Real Time Closed-Form Model for Nonlinearity Assessment of Fibre Optic Links with Lumped Loss. , 2021, , .		0
21	Machine Learning for Power Profiles Prediction in Presence of Inter-channel Stimulated Raman Scattering., 2021,,.		4
22	Multi-band programmable gain Raman amplifier for high-capacity optical networks. , 2021, , .		1
23	Generalization Properties of Machine Learning-based Raman Models. , 2021, , .		4
24	Closed-Form EGN Model for FMF Systems. , 2021, , .		5
25	Autonomous Control Model for C+L Multi-band Photonic Switch System using Machine Learning. , 2021, , .		0
26	Machine Learning Driven Model for Software Management of Photonics Switching Systems. , 2021, , .		1
27	Correlated Nonlinear Phase-Noise in Multi-Subcarrier Systems: Modeling and Mitigation. Journal of Lightwave Technology, 2020, 38, 1148-1156.	4.6	10
28	Inverse System Design Using Machine Learning: The Raman Amplifier Case. Journal of Lightwave Technology, 2020, 38, 736-753.	4.6	63
29	Adaptive Probabilistic Shaped Modulation for High-Capacity Free-Space Optical Links. Journal of Lightwave Technology, 2020, 38, 6529-6541.	4.6	27
30	Introducing Load Aware Neural Networks for Accurate Predictions of Raman Amplifiers. Journal of Lightwave Technology, 2020, 38, 6481-6491.	4.6	23
31	Modulation Format, Core and Spectrum Assignment in a Multicore Optical Link with and without MIMO Receivers. , 2020, , .		1
32	Effectiveness of Machine Learning in Assessing QoT Impairments of Photonics Integrated Circuits to Reduce System Margin. , 2020, , .		3
33	Machine learning assisted abstraction of photonic integrated circuits in fully disaggregated transparent optical networks. , 2020, , .		5
34	Advancing classical and quantum communication systems with machine learning. , 2020, , .		1
35	Advances in Modeling and Mitigation of Nonlinear Effects in Uncompensated Coherent Optical Transmission Systems. , 2020, , .		2
36	Experimental demonstration of arbitrary Raman gain–profile designs using machine learning. , 2020, , .		6

#	Article	IF	CITATIONS
37	Load aware Raman gain profile prediction in dynamic multi-band optical networks. , 2020, , .		4
38	Accurate Closed-Form GN/EGN-Model Formula Leveraging a Large QAM-System Test-Set. IEEE Photonics Technology Letters, 2019, 31, 1381-1384.	2.5	7
39	Adaptive Stokes-Based Polarization Demultiplexing for Long-Haul Multi-Subcarrier Systems. IEEE Photonics Technology Letters, 2019, 31, 759-762.	2.5	11
40	A GN/EGN-model real-time closed-form formula tested over 7,000 virtual links. , 2019, , .		1
41	An ultra-fast method for gain and noise prediction of Raman amplifiers. , 2019, , .		5
42	Assessing the Impact of Design Options for an Optical Switch in Network Routing Impairments. , 2019, , .		4
43	Impact of Nonlinear Effects and Mitigation on Coherent Optical Systems. Telecommunications and Information Technology, 2019, , 93-120.	0.2	3
44	Enhanced resilience towards ROADM-induced optical filtering using subcarrier multiplexing and optimized bit and power loading. Optics Express, 2019, 27, 30710.	3.4	13
45	Machine learning-based Raman amplifier design. , 2019, , .		11
46	Observing the effect of polarization mode dispersion on nonlinear interference generation in wide-band optical links. OSA Continuum, 2019, 2, 2856.	1.8	4
47	Low-Complexity Time-Domain DBP Based on Random Step-Size and Partitioned Quantization. Journal of Lightwave Technology, 2018, 36, 2888-2895.	4.6	9
48	Non-Linearity Modeling for Gaussian-Constellation Systems at Ultra-High Symbol Rates. , 2018, , .		6
49	The Synopsys Software Environment to Design and Simulate Photonic Integrated Circuits: A Case Study for 400G Transmission. , 2018, , .		9
50	Frequency-Domain Hybrid Modulation Formats for High Bit-Rate Flexibility and Nonlinear Robustness. Journal of Lightwave Technology, 2018, 36, 4856-4870.	4.6	18
51	Observing the Interaction of PMD with Generation of NLI in Uncompensated Amplified Optical Links. , 2018, , .		10
52	Combining Probabilistic Shaping and Nonlinear Mitigation: Potential Gains and Challenges. , 2018, , .		3
53	Networking Benefit of Multi-Subcarrier Transceivers. , 2018, , .		2
54	Efficient Time-Domain DBP using Random Step-Size and Multi-Band Quantization. , 2018, , .		5

#	Article	IF	CITATIONS
55	Non-Linearity Modeling at Ultra-High Symbol Rates. , 2018, , .		4
56	Scalable modulation technology and the tradeoff of reach, spectral efficiency, and complexity. , 2017, , .		1
57	Nonlinear Mitigation of a 400G Frequency-Hybrid Superchannel for the 62.5-GHz Slot. Journal of Lightwave Technology, 2017, 35, 3963-3973.	4.6	5
58	Comparing Different Options for Flexible Networking: Probabilistic Shaping vs. Hybrid Subcarrier Modulation. , $2017, \ldots$		10
59	On the Accumulation of Non-Linear Interference in Multi-Subcarrier Systems. , 2017, , .		1
60	FFSS: The fast fiber simulator software. , 2017, , .		13
61	Nonlinear mitigation on subcarrier-multiplexed PM-16QAM optical systems. Optics Express, 2017, 25, 4298.	3.4	30
62	Mitigation of transceiver bandwidth limitations using multi-subcarrier signals., 2017,,.		1
63	400G Frequency-Hybrid Superchannel for the 62.5 GHz Slot. , 2017, , .		0
64	Low-Complexity Chromatic Dispersion Equalizer for 400G Transmission Systems., 2017,,.		2
65	Effectiveness of Symbol-Rate Optimization with PM-16QAM Subcarriers in WDM Transmission. , 2017, , .		3
66	Hybrid Modulation Formats Enabling Elastic Fixed-Grid Optical Networks. Journal of Optical Communications and Networking, 2016, 8, A92.	4.8	32
67	Analytical and Experimental Results on System Maximum Reach Increase Through Symbol Rate Optimization. Journal of Lightwave Technology, 2016, 34, 1872-1885.	4.6	106
68	Merit of Raman Pumping in Uniform and Uncompensated Links Supporting NyWDM Transmission. Journal of Lightwave Technology, 2016, 34, 554-565.	4.6	37
69	Bit-rate maximization for elastic transponders operating in WDM uncompensated amplified links. , 2016, , .		1
70	Effectiveness of Digital Back-Propagation and Symbol-Rate Optimization in Coherent WDM Optical Systems. , 2016, , .		5
71	Achieving Fine Bit-Rate Granularity with Hybrid Subcarrier Modulation. , 2016, , .		4
72	Experimental validation of the EGN-model in uncompensated optical links., 2015,,.		14

#	Article	IF	Citations
73	Analytical results on system maximum reach increase through symbol rate optimization. , 2015, , .		28
74	Experimental demonstration of fiber nonlinearity mitigation in a WDM multi-subcarrier coherent optical system. , $2015, \ldots$		14
75	What is the right physical layer model for a highly dynamic reconfgurable optical network?. , 2015, , .		2
76	On the ultimate potential of symbol-rate optimization for increasing system maximum reach. , 2015, , .		10
77	FLEX -PAM modulation formats for future optical transmission system. , 2015, , .		1
78	Fully Blind Linear and Nonlinear Equalization for 100G PM-64QAM Optical Systems. Journal of Lightwave Technology, 2015, 33, 1265-1274.	4.6	32
79	A Simple and Effective Closed-Form GN Model Correction Formula Accounting for Signal Non-Gaussian Distribution. Journal of Lightwave Technology, 2015, 33, 459-473.	4.6	88
80	Design Strategies and Merit of System Parameters for Uniform Uncompensated Links Supporting Nyquist-WDM Transmission. Journal of Lightwave Technology, 2015, 33, 3921-3932.	4.6	50
81	Theoretical and experimental assessment of nonlinearity mitigation through symbol rate optimization. , $2015, , .$		2
82	HFA Optimization for Nyquist WDM Transmission. , 2015, , .		5
83	Flexible FEC Optimization for Time-Domain Hybrid Modulation Formats. , 2015, , .		2
84	Electronic dispersion pre-compensation in PM-QPSK systems over mixed-fiber links., 2014,,.		2
85	Time-Division Hybrid Modulation Formats: Tx Operation Strategies and Countermeasures to Nonlinear Propagation. , 2014, , .		27
86	1306-km 20x1248-Gb/s PM-64QAM Transmission over PSCF with Net SEDP 11,300 (bâ ^{^™} km)/s/Hz using 115 samp/symb DAC. Optics Express, 2014, 22, 1796.	3.4	20
87	EGN model of non-linear fiber propagation. Optics Express, 2014, 22, 16335.	3.4	347
88	Impact of low-OSNR operation on the performance of advanced coherent optical transmission systems. , 2014, , .		17
89	Transmission of PM-64QAM over 1524 km of PSCF using fully-blind equalization and Volterra-based nonlinear mitigation. , 2014, , .		4
90	On the impact of non-linear phase-noise on the assessment of long-haul uncompensated coherent systems performance. , 2014, , .		9

#	Article	IF	Citations
91	The GN-Model of Fiber Non-Linear Propagation and its Applications. Journal of Lightwave Technology, 2014, 32, 694-721.	4.6	531
92	GN-Model Validation Over Seven Fiber Types in Uncompensated PM-16QAM Nyquist-WDM Links. IEEE Photonics Technology Letters, 2014, 26, 206-209.	2.5	41
93	Dual Stage CPE for 64-QAM Optical Systems Based on a Modified QPSK-Partitioning Algorithm. IEEE Photonics Technology Letters, 2014, 26, 267-270.	2.5	18
94	Boosting the capacity of legacy networks using PM-64QAM and Nyquist-WDM technique. , 2014, , .		0
95	Simulation of silicon photonic coherent PM-QPSK transceivers using microring modulators. , 2014, , .		1
96	Nyquist-WDM-Based Flexible Optical Networks: Exploring Physical Layer Design Parameters. Journal of Lightwave Technology, 2013, 31, 2332-2339.	4.6	79
97	Design Rules for Reach Maximization in Uncompensated Nyquist-WDM Links., 2013,,.		3
98	Impact of the Transmitted Signal Initial Dispersion Transient on the Accuracy of the GN-Model of Non-Linear Propagation. , 2013, , .		23
99	Extensive Fiber Comparison and GN-model Validation in Uncompensated Links using DAC-generated Nyquist-WDM PM-16QAM Channels. , 2013, , .		13
100	The LOGON Strategy for Low-Complexity Control Plane Implementation in New-Generation Flexible Networks. , 2013, , .		82
101	Experimental demonstration of a frequency-domain Volterra series nonlinear equalizer in polarization-multiplexed transmission. Optics Express, 2013, 21, 276.	3.4	20
102	Extension and validation of the GN model for non-linear interference to uncompensated links using Raman amplification. Optics Express, 2013, 21, 3308.	3.4	39
103	Optical Control Plane Based on an Analytical Model of Non-Linear Transmission Effects in a Self-Optimized Network. , 2013, , .		13
104	1306-km 20124.8-Gb/s PM-64QAM Transmission over PSCF with Net SEDP 11,300 (b.km)/s/Hz using 1.15 samp/symb DAC. , 2013, , .		1
105	Fiber Figure of Merit Based on Maximum Reach., 2013,,.		17
106	Optimization of DSP-based Nyquist-WDM PM-16QAM Transmitter., 2012,,.		11
107	Analytical results on channel capacity in uncompensated optical links with coherent detection: erratum. Optics Express, 2012, 20, 19610.	3.4	12
108	Novel figure of merit to compare fibers in coherent detection systems with uncompensated links. Optics Express, 2012, 20, 339.	3.4	15

#	Article	IF	Citations
109	Experimental Demonstration of a Frequency-Domain Volterra Series Nonlinear Equalizer in Polarization-Multiplexed Transmission. , 2012 , , .		1
110	Evaluation of the Dependence on System Parameters of Non-Linear Interference Accumulation in Multi-Span Links. , 2012 , , .		2
111	Investigation of the Dependence of Non-Linear Interference on the Number of WDM Channels in Coherent Optical Networks. , 2012, , .		7
112	Network Performance Evaluation for Nyquist-WDM-Based Flexible Optical Networking. , 2012, , .		2
113	Modeling of the Impact of Nonlinear Propagation Effects in Uncompensated Optical Coherent Transmission Links. Journal of Lightwave Technology, 2012, 30, 1524-1539.	4.6	341
114	16\$,imes,\$125 Gb/s Quasi-Nyquist DAC-Generated PM-16QAM Transmission Over 3590 km of PSCF. IEEE Photonics Technology Letters, 2012, 24, 2143-2146.	2.5	11
115	Experimental Investigation of Nonlinear Interference Accumulation in Uncompensated Links. IEEE Photonics Technology Letters, 2012, 24, 1230-1232.	2.5	24
116	Evaluation of Non-Linear Interference in Uncompensated Links using Raman Amplification. , 2012, , .		1
117	Ultra-Long-Haul Transmission of $16\tilde{A}-112$ Gb/s Spectrally-Engineered DAC-Generated Nyquist-WDM PM-16QAM Channels with $1.05\tilde{A}-$ (Symbol-Rate) Frequency Spacing. , 2012 , , .		15
118	Non-linearity Compensation Limits in Optical Systems with Coherent Receivers. , 2012, , .		4
119	Digital Nyquist WDM for Access Networks using Limited Bandwidth Reflective Semiconductor Optical Amplifiers. , 2012, , .		1
120	Raman-assisted transmission of Nyquist-WDM PM-16QAM channels at 240 Gbps on PSCF., 2011, , .		1
121	A simple and accurate model for non-linear propagation effects in uncompensated coherent transmission links. , 2011, , .		5
122	Performance Dependence on Channel Baud-Rate of PM-QPSK Systems Over Uncompensated Links. IEEE Photonics Technology Letters, 2011, 23, 15-17.	2.5	33
123	On the Performance of Nyquist-WDM Terabit Superchannels Based on PM-BPSK, PM-QPSK, PM-8QAM or PM-16QAM Subcarriers. Journal of Lightwave Technology, 2011, 29, 53-61.	4.6	461
124	Transmission of 9\$,imes,\$138 Gb/s Prefiltered PM-8QAM Signals Over 4000 km of Pure Silica-Core Fiber. Journal of Lightwave Technology, 2011, 29, 2310-2318.	4.6	23
125	Analytical Modeling of Nonlinear Propagation in Uncompensated Optical Transmission Links. IEEE Photonics Technology Letters, 2011, 23, 742-744.	2.5	215
126	Analytical results on channel capacity in uncompensated optical links with coherent detection. Optics Express, 2011, 19, B440.	3.4	81

#	Article	IF	Citations
127	Experimental validation of an analytical model for nonlinear propagation in uncompensated optical links. Optics Express, 2011, 19, B790.	3.4	43
128	Performance prediction for WDM PM-QPSK transmission over uncompensated links. , 2011, , .		23
129	Performance of Digital Nyquist-WDM. , 2011, , .		4
130	Analytical Results on Channel Capacity in Uncompensated Optical Links with Coherent Detection., 2011,,.		3
131	Performance Evaluation of Coherent PS-QPSK (HEXA) Modulation. , 2011, , .		0
132	A novel Figure of Merit to Compare Fibers in Coherent Detection Systems with Uncompensated Links. , $2011, \ldots$		1
133	Investigation of the Impact of Ultra-Narrow Carrier Spacing on the Transmission of a 10-Carrier 1Tb/s Superchannel. , 2010, , .		24
134	Nonlinear propagation of 1 Tbps Superchannels based on 240 Gbps PM-16QAM subcarriers on PSCF with hybrid Erbium/Raman fiber amplification. , 2010, , .		2
135	Joint DGD, PDL and chromatic dispersion estimation in ultra-long-haul WDM transmission experiments with coherent receivers. , 2010, , .		6
136	Coherent polarization-multiplexed formats: Receiver requirements and mitigation of fiber non-linear effects. , $2010, , .$		4
137	DSP-based compensation of non-linear impairments in 100 Gb/s PolMux QPSK., 2010,,.		5
138	Performance Analysis of Coherent 222-Gb/s NRZ PM-16QAM WDM Systems Over Long-Haul Links. IEEE Photonics Technology Letters, 2010, 22, 266-268.	2.5	9
139	Maximum Reach Versus Transmission Capacity for Terabit Superchannels Based on 27.75-GBaud PM-QPSK, PM-8QAM, or PM-16QAM. IEEE Photonics Technology Letters, 2010, 22, 829-831.	2.5	24
140	Performance Evaluation of Long-Haul 111 Gb/s PM-QPSK Transmission Over Different Fiber Types. IEEE Photonics Technology Letters, 2010, 22, 1446-1448.	2.5	20
141	Ultra-Narrow-Spacing 10-Channel 1.12 Tb/s D-WDM Long-Haul Transmission Over Uncompensated SMF and NZDSF. IEEE Photonics Technology Letters, 2010, 22, 1419-1421.	2.5	50
142	Performance evaluation of coherent WDM PS-QPSK (HEXA) accounting for non-linear fiber propagation effects. Optics Express, 2010, 18, 11360.	3.4	69
143	Transoceanic PM-QPSK Terabit superchannel transmission experiments at Baud-rate subcarrier spacing. , 2010, , .		31
144	Performance Limits of Nyquist-WDM and CO-OFDM in High-Speed PM-QPSK Systems. IEEE Photonics Technology Letters, 2010, 22, 1129-1131.	2.5	335

#	Article	IF	Citations
145	Statistical characterization of PM-QPSK signals after propagation in uncompensated fiber links. , 2010, , .		55
146	NRZ-PM-QPSK 16 \$imes\$ 100 Gb/s Transmission Over Installed Fiber With Different Dispersion Maps. IEEE Photonics Technology Letters, 2010, 22, 371-373.	2.5	20
147	Investigation on the robustness of a Nyquist-WDM Terabit superchannel to transmitter and receiver non-idealities. , 2010, , .		17
148	Single- and multi-carrier techniques to build up Tb/s per channel transmission systems. , 2010, , .		11
149	Evaluation of the computational effort for chromatic dispersion compensation in coherent optical PM-OFDM and PM-QAM systems. Optics Express, 2009, 17, 1385.	3.4	25
150	Impact of ADC Sampling Speed and Resolution on Uncompensated Long-Haul 111-Gb/s WDM PM-QPSK Systems. IEEE Photonics Technology Letters, 2009, 21, 1514-1516.	2.5	6
151	Guard-Band for $111~\mathrm{Gbit/s}$ coherent PM-QPSK channels on legacy fiber links carrying $10~\mathrm{Gbit/s}$ IMDD channels. , $2009,$, .		6
152	Dispersion Compensation and Mitigation of Nonlinear Effects in 111-Gb/s WDM Coherent PM-QPSK Systems. IEEE Photonics Technology Letters, 2008, 20, 1473-1475.	2.5	75
153	8B10B line coding to mitigate the non-uniform FM laser response of direct modulated CPFSK transmitter. Optics Express, 2008, 16, 7279.	3.4	7
154	Performance evaluation and assessment of receiver impairments of a novel PolSK transceiver based on differential demodulation. Optics Express, 2008, 16, 16079.	3.4	6
155	Fundamental performance limits of optical duobinary. Optics Express, 2008, 16, 19600.	3.4	11
156	Optical vs. electronic chromatic dispersion compensation in WDM coherent PM-QPSK systems at 111 Gbit/s. , $2008,$, .		2
157	Dynamic Range of Single-Ended Detection Receivers for 100GE Coherent PM-QPSK. IEEE Photonics Technology Letters, 2008, 20, 1281-1283.	2.5	16
158	Simultaneous optimisation of filter bandwidths and interferometer free spectral range for DPSK and DQPSK modulation. IET Optoelectronics, 2008, 2, 143-147.	3.3	1
159	A novel PolSK transceiver based on differential demodulation: assessment of performance. , 2006, , .		1
160	Best Optical Filtering for Duobinary Transmission. , 2005, , 21-28.		1
161	Modulation Formats Suitable for Ultrahigh Spectral Efficient WDM Systems. IEEE Journal of Selected Topics in Quantum Electronics, 2004, 10, 321-328.	2.9	33
162	RingO: An Experimental WDM Optical Packet Network for Metro Applications. IEEE Journal on Selected Areas in Communications, 2004, 22, 1561-1571.	14.0	92

#	Article	IF	Citations
163	Quantum limit of direct-detection receivers using duobinary transmission. IEEE Photonics Technology Letters, 2003, 15, 102-104.	2.5	34
164	EDFA gain transients: experimental demonstration of a low cost electronic control. IEEE Photonics Technology Letters, 2003, 15, 1351-1353.	2.5	23
165	Quantum limit of direct-detection receivers: duobinary vs. IMDD. , 2003, , .		0
166	Ringo: A Demonstrator of WDM Optical Packet Network on a Ring Topology. IFIP Advances in Information and Communication Technology, 2003, , 183-197.	0.7	10
167	On the use of NRZ, RZ, and CSRZ modulation at 40 Gb/s with narrow DWDM channel spacing. Journal of Lightwave Technology, 2002, 20, 1694-1704.	4.6	81
168	On the optimization of hybrid Raman/erbium-doped fiber amplifiers. IEEE Photonics Technology Letters, 2001, 13, 1170-1172.	2.5	94
169	A novel analytical approach to the evaluation of the impact of fiber parametric gain on the bit error rate. IEEE Transactions on Communications, 2001, 49, 2154-2163.	7.8	54
170	A novel analytical method for the BER evaluation in optical systems affected by parametric gain. IEEE Photonics Technology Letters, 2000, 12, 152-154.	2.5	26
171	Suppression of spurious tones induced by the split-step method in fiber systems simulation. IEEE Photonics Technology Letters, 2000, 12, 489-491.	2.5	94
172	Parametric gain in multiwavelength systems: a new approach to noise enhancement analysis. IEEE Photonics Technology Letters, 1999, 11, 1135-1137.	2.5	13
173	All-optical label swapping with wavelength conversion for WDM-IP networks with subcarrier multiplexed addressing. IEEE Photonics Technology Letters, 1999, 11, 1497-1499.	2.5	116
174	On the joint effects of fiber parametric gain and birefringence and their influence on ASE noise. Journal of Lightwave Technology, 1998, 16, 1149-1157.	4.6	11
175	OPERA: an optical packet experimental routing architecture with label swapping capability. Journal of Lightwave Technology, 1998, 16, 2135-2145.	4.6	102
176	New analytical results on fiber parametric gain and its effects on ASE noise. IEEE Photonics Technology Letters, 1997, 9, 535-537.	2.5	71
177	A time-domain optical transmission system simulation package accounting for nonlinear and polarization-related effects in fiber. IEEE Journal on Selected Areas in Communications, 1997, 15, 751-765.	14.0	51
178	Parametric gain on dispersion compensated fiber links. , 0, , .		0
179	Polarization modulation in ultra-long haul transmission systems: a promising alternative to intensity modulation. , 0, , .		4
180	Theoretical and experimental results on transmission penalty due to fiber parametric gain in normal dispersion. , 0 , , .		2

#	Article	IF	CITATIONS
181	System impact of fiber parametric gain in long-haul optical links. , 0, , .		1
182	System impact of sideband instability., 0,,.		0
183	Parametric gain in WDM systems. , 0, , .		O
184	Suppression of spurious tones in fiber system simulations based on the split-step method., 0,,.		2
185	MAPON digital video distribution in the European ACTS CRABS project: simulation and experiment. , 0, ,		O
186	WDM optical IP tag switching with packet-rate wavelength conversion and subcarrier multiplexed addressing. , 0, , .		12
187	System impact of parametric gain: a novel method for the BER evaluation. , 0, , .		2
188	RINGO: a WDM ring optical packet network demonstrator., 0,,.		31
189	Comparison between different configurations of hybrid Raman/erbium-doped fiber amplifiers. , 0, , .		O
190	The impact of polarization mode dispersion: optical duobinary vs. NRZ transmission. , 0, , .		0
191	ASE-noise limit of direct-detection receivers: duobinary vs. IMDD. , 0, , .		0
192	System impact of EDFA gain fluctuation in WDM optical packet networks. , 0, , .		0