
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8844088/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biocompatible Deep Eutectic Solvents Based on Choline Chloride: Characterization and Application to the Extraction of Rutin from <i>Sophora japonica</i> . ACS Sustainable Chemistry and Engineering, 2015, 3, 2746-2755.	6.7	437
2	Preparation of a sugar catalyst and its use for highly efficient production of biodiesel. Green Chemistry, 2007, 9, 434.	9.0	335
3	Efficient production of biodiesel from high free fatty acid-containing waste oils using various carbohydrate-derived solid acid catalysts. Bioresource Technology, 2008, 99, 8752-8758.	9.6	335
4	Metal-organic frameworks as novel matrices for efficient enzyme immobilization: An update review. Coordination Chemistry Reviews, 2020, 406, 213149.	18.8	298
5	Fabrication of electrospun polylactic acid nanofilm incorporating cinnamon essential oil/ β -cyclodextrin inclusion complex for antimicrobial packaging. Food Chemistry, 2016, 196, 996-1004.	8.2	263
6	Recent progress on deep eutectic solvents in biocatalysis. Bioresources and Bioprocessing, 2017, 4, 34.	4.2	262
7	Packaging and delivering enzymes by amorphous metal-organic frameworks. Nature Communications, 2019, 10, 5165.	12.8	234
8	Novel Nano-/Micro-Biocatalyst: Soybean Epoxide Hydrolase Immobilized on UiO-66-NH ₂ MOF for Efficient Biosynthesis of Enantiopure (<i>R</i>)-1, 2-Octanediol in Deep Eutectic Solvents. ACS Sustainable Chemistry and Engineering, 2016, 4, 3586-3595.	6.7	171
9	A Highly Active Bagasseâ€Derived Solid Acid Catalyst with Properties Suitable for Production of Biodiesel. ChemSusChem, 2012, 5, 1533-1541.	6.8	133
10	[C4H8SO3Hmim]HSO4 as an efficient catalyst for direct liquefaction of bagasse lignin: Decomposition properties of the inner structural units. Chemical Engineering Science, 2015, 122, 24-33.	3.8	93
11	Biocatalytic Reduction of HMF to 2,5â€Bis(hydroxymethyl)furan by HMFâ€Tolerant Whole Cells. ChemSusChem, 2017, 10, 372-378.	6.8	92
12	Papain@Magnetic Nanocrystalline Cellulose Nanobiocatalyst: A Highly Efficient Biocatalyst for Dipeptide Biosynthesis in Deep Eutectic Solvents. ACS Sustainable Chemistry and Engineering, 2015, 3, 1589-1599.	6.7	86
13	Efficient enantioselective hydrolysis of d,l-phenylglycine methyl ester catalyzed by immobilized Candida antarctica lipase B in ionic liquid containing systems. Journal of Biotechnology, 2006, 125, 64-74.	3.8	85
14	Effect of organic acids on the growth and lipid accumulation of oleaginous yeast Trichosporon fermentans. Biotechnology for Biofuels, 2012, 5, 4.	6.2	79
15	Preparation and Characterization of Immobilized Lipase from Pseudomonas Cepacia onto Magnetic Cellulose Nanocrystals. Scientific Reports, 2016, 6, 20420.	3.3	77
16	Use of ionic liquids to improve whole-cell biocatalytic asymmetric reduction of acetyltrimethylsilane for efficient synthesis of enantiopure (S)-1-trimethylsilylethanol. Green Chemistry, 2006, 8, 147.	9.0	76
17	Preparation of Structurally Diverse Chiral Alcohols by Engineering Ketoreductase <i>Cg</i> KR1. ACS Catalysis, 2017, 7, 7174-7181.	11.2	74
18	Recent advances in immobilized enzymes on nanocarriers. Chinese Journal of Catalysis, 2016, 37, 1814-1823.	14.0	71

#	Article	IF	CITATIONS
19	Palladium(II)-Catalyzed Enantioselective Arylation of α-Imino Esters. Journal of Organic Chemistry, 2012, 77, 8541-8548.	3.2	70
20	Changes in the Structure and the Thermal Properties of Kraft Lignin during Its Dissolution in Cholinium Ionic Liquids. ACS Sustainable Chemistry and Engineering, 2015, 3, 2951-2958.	6.7	69
21	Whole-Cell Biocatalytic Processes with Ionic Liquids. ACS Sustainable Chemistry and Engineering, 2016, 4, 371-386.	6.7	68
22	Multi-functional magnetic hydrogels based on Millettia speciosa Champ residue cellulose and Chitosan: Highly efficient and reusable adsorbent for Congo red and Cu2+ removal. Chemical Engineering Journal, 2021, 423, 130198.	12.7	67
23	Impact of ionic liquids on papain: an investigation of structure–function relationships. Green Chemistry, 2006, 8, 509-512.	9.0	65
24	Encapsulation of fish oil in a coaxial electrospun nanofibrous mat and its properties. RSC Advances, 2017, 7, 14939-14946.	3.6	62
25	Efficient Hydrolysis of Cellulose over a Novel Sucralose-Derived Solid Acid with Cellulose-Binding and Catalytic Sites. Journal of Agricultural and Food Chemistry, 2014, 62, 1905-1911.	5.2	60
26	Enhancing Asymmetric Reduction of 3-Chloropropiophenone with Immobilized <i>Acetobacter</i> sp. CCTCC M209061 Cells by Using Deep Eutectic Solvents as Cosolvents. ACS Sustainable Chemistry and Engineering, 2015, 3, 718-724.	6.7	58
27	Use of an ionic liquid to improve asymmetric reduction of 4′-methoxyacetophenone catalyzed by immobilized Rhodotorula sp. AS2.2241 cells. Journal of Molecular Catalysis B: Enzymatic, 2009, 56, 70-76.	1.8	57
28	Cross-linked enzyme aggregates of Mung bean epoxide hydrolases: A highly active, stable and recyclable biocatalyst for asymmetric hydrolysis of epoxides. Journal of Biotechnology, 2013, 166, 12-19.	3.8	57
29	Preparation of a novel magnetic cellulose nanocrystal and its efficient use for enzyme immobilization. Journal of Materials Chemistry B, 2014, 2, 5522-5530.	5.8	57
30	Acidic ionic liquid-catalyzed esterification of oleic acid for biodiesel synthesis. Chinese Journal of Catalysis, 2014, 35, 396-406.	14.0	55
31	Hepatic Arterial Complications in Liver Transplant Recipients Treated with Pretransplantation Chemoembolization for Hepatocellular Carcinoma. Radiology, 2000, 214, 775-779.	7.3	54
32	A novel polysaccharide from the roots of Millettia Speciosa Champ: preparation, structural characterization and immunomodulatory activity. International Journal of Biological Macromolecules, 2020, 145, 547-557.	7.5	53
33	Harnessing the biocatalytic attributes and applied perspectives of nanoengineered laccases—A review. International Journal of Biological Macromolecules, 2021, 166, 352-373.	7.5	52
34	Biocatalytic Upgrading of 5-Hydroxymethylfurfural (HMF) with Levulinic Acid to HMF Levulinate in Biomass-Derived Solvents. ACS Sustainable Chemistry and Engineering, 2016, 4, 4050-4054.	6.7	50
35	Enhancing oxidative stability of encapsulated fish oil by incorporation of ferulic acid into electrospun zein mat. LWT - Food Science and Technology, 2017, 84, 82-90.	5.2	50
36	Immobilization of Alkaline Protease on Amino-Functionalized Magnetic Nanoparticles and Its Efficient Use for Preparation of Oat Polypeptides. Industrial & Engineering Chemistry Research, 2015, 54, 4689-4698.	3.7	48

#	Article	IF	CITATIONS
37	Electrospun core-shell structured nanofilm as a novel colon-specific delivery system for protein. Carbohydrate Polymers, 2017, 169, 157-166.	10.2	48
38	Efficient kinetic resolution of (R,S)-1-trimethylsilylethanol via lipase-mediated enantioselective acylation in ionic liquids. Chirality, 2006, 18, 814-821.	2.6	47
39	Catalytic Conversion of Carbohydrates to Levulinate Ester over Heteropolyanionâ€Based Ionic Liquids. ChemSusChem, 2016, 9, 3307-3316.	6.8	46
40	Improving the thermostability and activity of Paenibacillus pasadenensis chitinase through semi-rational design. International Journal of Biological Macromolecules, 2020, 150, 9-15.	7.5	46
41	Immune enhancement activity of a novel polysaccharide produced by Dendrobium officinale endophytic fungus Fusarium solani DO7. Journal of Functional Foods, 2019, 53, 266-275.	3.4	44
42	Efficient enantioselective reduction of 4′-methoxyacetophenone with immobilized Rhodotorula sp. AS2.2241 cells in a hydrophilic ionic liquid-containing co-solvent system. Journal of Biotechnology, 2009, 143, 190-197.	3.8	43
43	Markedly improving lipase-mediated asymmetric ammonolysis of d,l-p-hydroxyphenylglycine methyl ester by using an ionic liquid as the reaction medium. Green Chemistry, 2005, 7, 500.	9.0	42
44	Efficient regioselective acylation of 1-β-d-arabinofuranosylcytosine catalyzed by lipase in ionic liquid containing systems. Green Chemistry, 2006, 8, 538-544.	9.0	42
45	Microbial synthesis of functional odd-chain fatty acids: a review. World Journal of Microbiology and Biotechnology, 2020, 36, 35.	3.6	42
46	Ionic liquids for regulating biocatalytic process: Achievements and perspectives. Biotechnology Advances, 2021, 51, 107702.	11.7	42
47	Combination of deep eutectic solvent and ionic liquid to improve biocatalytic reduction of 2-octanone with Acetobacter pasteurianus GIM1.158 cell. Scientific Reports, 2016, 6, 26158.	3.3	41
48	Using a novel polysaccharide BM2 produced by Bacillus megaterium strain PL8 as an efficient bioflocculant for wastewater treatment. International Journal of Biological Macromolecules, 2020, 162, 374-384.	7.5	41
49	Biocatalytic anti-Prelog stereoselective reduction of 4′-methoxyacetophenone to (R)-1-(4-methoxyphenyl)ethanol with immobilized Trigonopsis variabilis AS2.1611 cells using an ionic liquid-containing medium. Green Chemistry, 2009, 11, 1377.	9.0	40
50	Efficient synthesis of optically active organosilyl alcohol via asymmetric reduction of acyl silane with immobilized yeast. Enzyme and Microbial Technology, 2004, 35, 190-196.	3.2	38
51	Immobilization of Acetobacter sp. CCTCC M209061 for efficient asymmetric reduction of ketones and biocatalyst recycling. Microbial Cell Factories, 2012, 11, 119.	4.0	38
52	Highly Efficient Enzymatic Acylation of Dihydromyricetin by the Immobilized Lipase with Deep Eutectic Solvents as Cosolvent. Journal of Agricultural and Food Chemistry, 2017, 65, 2084-2088.	5.2	37
53	Markedly improving Novozym 435-mediated regioselective acylation of 1-β-d-arabinofuranosylcytosine by using co-solvent mixtures as the reaction media. Journal of Biotechnology, 2006, 124, 552-560.	3.8	36
54	Magnetic ZIF-8/cellulose/Fe3O4 nanocomposite: preparation, characterization, and enzyme immobilization. Bioresources and Bioprocessing, 2017, 4, .	4.2	35

#	Article	IF	CITATIONS
55	Using deep eutectic solvents to improve the resolution of racemic 1-(4-methoxyphenyl)ethanol through Acetobacter sp. CCTCC M209061 cell-mediated asymmetric oxidation. RSC Advances, 2015, 5, 6357-6364.	3.6	34
56	Structure and immunomodulatory activity of polysaccharides from Fusarium solani DO7 by solid-state fermentation. International Journal of Biological Macromolecules, 2019, 137, 568-575.	7.5	34
57	Using a water-immiscible ionic liquid to improve asymmetric reduction of 4-(trimethylsilyl)-3-butyn-2-one catalyzed by immobilized Candida parapsilosis CCTCC M203011 cells. BMC Biotechnology, 2009, 9, 90.	3.3	33
58	The application of deep eutectic solvent on the extraction and in vitro antioxidant activity of rutin from Sophora japonica bud. Journal of Food Science and Technology, 2018, 55, 2326-2333.	2.8	33
59	Purification of anthocyanins from saskatoon berries and their microencapsulation in deep eutectic solvents. LWT - Food Science and Technology, 2018, 95, 316-325.	5.2	33
60	Extraction, purification and antioxidant activity of novel polysaccharides from <i>Dendrobium officinale</i> by deep eutectic solvents. Natural Product Research, 2019, 33, 3248-3253.	1.8	33
61	Enhanced activity, enantioselectivity and stability of papain in asymmetric hydrolysis of d,l-p-hydroxyphenylglycine methyl ester with ionic liquid. Biocatalysis and Biotransformation, 2004, 22, 171-176.	2.0	32
62	Highly efficient and regioselective synthesis of dihydromyricetin esters by immobilized lipase. Journal of Biotechnology, 2015, 199, 31-37.	3.8	32
63	Using water-miscible ionic liquids to improve the biocatalytic anti-Prelog asymmetric reduction of prochiral ketones with whole cells of Acetobacter sp. CCTCC M209061. Chemical Engineering Science, 2012, 84, 695-705.	3.8	30
64	Biocatalytic anti-Prelog stereoselective reduction of ethyl acetoacetate catalyzed by whole cells of Acetobacter sp. CCTCC M209061. Journal of Biotechnology, 2013, 163, 292-300.	3.8	29
65	Engineering of a novel carbonyl reductase with coenzyme regeneration in E. coli for efficient biosynthesis of enantiopure chiral alcohols. Journal of Biotechnology, 2016, 230, 54-62.	3.8	29
66	Markedly improving asymmetric oxidation of 1-(4-methoxyphenyl) ethanol with Acetobacter sp. CCTCC M209061 cells by adding deep eutectic solvent in a two-phase system. Microbial Cell Factories, 2016, 15, 5.	4.0	29
67	Increased enantioselectivity in the enzymatic hydrolysis of amino acid esters in the ionic liquid 1-butyl-3-methyl-imidazolium tetrafluoroborate. Biocatalysis and Biotransformation, 2005, 23, 89-95.	2.0	28
68	Fungal polysaccharide similar with host Dendrobium officinale polysaccharide: Preparation, structure characteristics and biological activities. International Journal of Biological Macromolecules, 2019, 141, 460-470.	7.5	28
69	Improving biocatalysis of cefaclor with penicillin acylase immobilized on magnetic nanocrystalline cellulose in deep eutectic solvent based co-solvent. Bioresource Technology, 2019, 288, 121548.	9.6	28
70	Investigation of hierarchically porous zeolitic imidazolate frameworks for highly efficient dye removal. Journal of Hazardous Materials, 2021, 417, 126011.	12.4	28
71	Effect of acetylation modification on the emulsifying and antioxidant properties of polysaccharide from Millettia speciosa Champ. Food Hydrocolloids, 2022, 124, 107217.	10.7	28
72	Use of Crude Glycerol as Sole Carbon Source for Microbial Lipid Production by Oleaginous Yeasts. Applied Biochemistry and Biotechnology, 2017, 182, 495-510.	2.9	27

#	Article	IF	CITATIONS
73	Efficient Bioconversion of Sucrose to Highâ€Valueâ€Added Glucaric Acid by Inâ€Vitro Metabolic Engineering. ChemSusChem, 2019, 12, 2278-2285.	6.8	27
74	Novel and highly regioselective route for synthesis of 5-fluorouridine lipophilic ester derivatives by lipozyme TL IM. Journal of Biotechnology, 2007, 129, 689-695.	3.8	26
75	Biocatalytic anti-Prelog reduction of prochiral ketones with whole cells of Acetobacter pasteurianus GIM1.158. Microbial Cell Factories, 2014, 13, 84.	4.0	25
76	Preparation of a Nanobiocatalyst by Efficiently Immobilizing <i>Aspergillus niger</i> Lipase onto Magnetic Metal–Biomolecule Frameworks (BioMOF). ChemCatChem, 2017, 9, 1794-1800.	3.7	25
77	Purification and characterization of alkaline chitinase from Paenibacillus pasadenensis CS0611. Chinese Journal of Catalysis, 2017, 38, 665-672.	14.0	25
78	Efficient microbial oil production on crude glycerol by Lipomyces starkeyi AS 2.1560 and its kinetics. Process Biochemistry, 2017, 58, 230-238.	3.7	25
79	Co-immobilization of multiple enzymes by self-assembly and chemical crosslinking for cofactor regeneration and robust biocatalysis. International Journal of Biological Macromolecules, 2020, 162, 445-453.	7.5	25
80	Optimization of culture conditions to produce high yields of active Acetobactersp. CCTCC M209061 cells for anti-Prelog reduction of prochiral ketones. BMC Biotechnology, 2011, 11, 110.	3.3	24
81	Efficient separation and purification of anthocyanins from saskatoon berry by using low transition temperature mixtures. RSC Advances, 2016, 6, 104582-104590.	3.6	24
82	Antimicrobial activity and action mechanism of triglycerol monolaurate on common foodborne pathogens. Food Control, 2019, 98, 113-119.	5.5	24
83	Nanostructured materials as a host matrix to develop robust peroxidases-based nanobiocatalytic systems. International Journal of Biological Macromolecules, 2020, 162, 1906-1923.	7.5	24
84	Preparation and antioxidant activity of selenium nanoparticles decorated by polysaccharides from <i>Sargassum fusiforme</i> . Journal of Food Science, 2021, 86, 977-986.	3.1	24
85	Zn-triazole coordination polymers: Bioinspired carbonic anhydrase mimics for hydration and sequestration of CO2. Chemical Engineering Journal, 2020, 398, 125530.	12.7	24
86	Enzymic asymmetric hydrolysis of D,L-p-hydroxyphenylglycine methyl ester in aqueous ionic liquid co-solvent mixtures. Biotechnology and Applied Biochemistry, 2005, 41, 151.	3.1	23
87	In vivo detoxification of furfural during lipid production by the oleaginous yeast Trichosporon fermentans. Biotechnology Letters, 2012, 34, 1637-1642.	2.2	23
88	Use of hydrophilic ionic liquids in a two-phase system to improve Mung bean epoxide hydrolases-mediated asymmetric hydrolysis of styrene oxide. Journal of Biotechnology, 2012, 162, 183-190.	3.8	23
89	A magnetic biocatalyst based on mussel-inspired polydopamine and its acylation of dihydromyricetin. Chinese Journal of Catalysis, 2016, 37, 584-595.	14.0	23
90	Preparation of a novel nanobiocatalyst by immobilizing penicillin acylase onto magnetic nanocrystalline cellulose and its use for efficient synthesis of cefaclor. Chemical Engineering Journal, 2018, 346, 361-368.	12.7	23

#	Article	IF	CITATIONS
91	Use of Ionic Liquid To Significantly Improve Asymmetric Reduction of Ethyl Acetoacetate Catalyzed by Acetobacter sp. CCTCC M209061 Cells. Industrial & Engineering Chemistry Research, 2013, 52, 12550-12558.	3.7	22
92	Novel Antioxidative Wall Materials for <i>Lactobacillus casei</i> Microencapsulation via the Maillard Reaction between the Soy Protein Isolate and Prebiotic Oligosaccharides. Journal of Agricultural and Food Chemistry, 2021, 69, 13744-13753.	5.2	22
93	Efficient synthesis of enantiopure (S)-4-(trimethylsilyl)-3-butyn-2-ol via asymmetric reduction of 4-(trimethylsilyl)-3-butyn-2-one with immobilized Candida parapsilosis CCTCC M203011 cells. Journal of Molecular Catalysis B: Enzymatic, 2008, 54, 122-129.	1.8	21
94	Efficient asymmetric hydrolysis of styrene oxide catalyzed by Mung bean epoxide hydrolases in ionic liquid-based biphasic systems. Bioresource Technology, 2012, 115, 58-62.	9.6	21
95	Highly enantioselective reduction of 4-(trimethylsilyl)-3-butyn-2-one to enantiopure (R)-4-(trimethylsilyl)-3-butyn-2-ol using a novel strain Acetobacter sp. CCTCC M209061. Bioresource Technology, 2009, 100, 5560-5565.	9.6	20
96	Using 1-propanol to significantly enhance the production of valuable odd-chain fatty acids by Rhodococcus opacus PD630. World Journal of Microbiology and Biotechnology, 2019, 35, 164.	3.6	20
97	Oxidized high-amylose starch macrogel as a novel delivery vehicle for probiotic and bioactive substances. Food Hydrocolloids, 2021, 114, 106578.	10.7	20
98	Hydroxynitrile Lyase Catalysis in Ionic Liquid-containing Systems. Biotechnology Letters, 2005, 27, 1387-1390.	2.2	19
99	Efficient anti-Prelog enantioselective reduction of acetyltrimethylsilane to (R)-1-trimethylsilylethanol by immobilized Candida parapsilosis CCTCC M203011 cells in ionic liquid-based biphasic systems. Microbial Cell Factories, 2012, 11, 108.	4.0	19
100	A Novel Carbonyl Reductase with Anti-Prelog Stereospecificity from Acetobacter sp. CCTCC M209061: Purification and Characterization. PLoS ONE, 2014, 9, e94543.	2.5	19
101	Using Ionic Liquid in a Biphasic System to Improve Asymmetric Hydrolysis of Styrene Oxide Catalyzed by Cross-Linked Enzyme Aggregates (CLEAs) of Mung Bean Epoxide Hydrolases. Industrial & Engineering Chemistry Research, 2014, 53, 7923-7930.	3.7	19
102	Double-Chitinase Hydrolysis of Crab Shell Chitin Pretreated by Ionic Liquid to Generate Chito-Oligosaccharide. ACS Sustainable Chemistry and Engineering, 2019, 7, 1683-1691.	6.7	19
103	Cloning, overexpression, and characterization of a novel organic solvent-tolerant lipase from Paenibacillus pasadenensis CS0611. Chinese Journal of Catalysis, 2018, 39, 937-945.	14.0	17
104	Bioprospecting of a novel endophytic Bacillus velezensis FZ06 from leaves of Camellia assamica: Production of three groups of lipopeptides and the inhibition against food spoilage microorganisms. Journal of Biotechnology, 2020, 323, 42-53.	3.8	17
105	A Versatile Competitive Coordination Strategy for Tailoring Bioactive Zeolitic Imidazolate Framework Composites. Small, 2021, 17, e2007586.	10.0	17
106	Kinetics and Mechanism Analysis on Microbial Oil Production by <i>Trichosporon fermentans</i> in Rice Straw Hydrolysate. Industrial & Engineering Chemistry Research, 2014, 53, 19034-19043.	3.7	16
107	Recruiting a Phosphite Dehydrogenase/Formamidase-Driven Antimicrobial Contamination System in <i>Bacillus subtilis</i> for Nonsterilized Fermentation of Acetoin. ACS Synthetic Biology, 2020, 9, 2537-2545.	3.8	16
108	Carbon source modify lipids composition of Rhodococcus opacus intended for infant formula. Journal of Biotechnology, 2020, 319, 8-14.	3.8	16

#	Article	IF	CITATIONS
109	The Effect of Different Factors on Microbial Oil Production by <i>Trichosporon Fermentans</i> on Rice Straw Acid Hydrolysate. International Journal of Green Energy, 2014, 11, 787-795.	3.8	15
110	Recombinant expression and characterization of a novel cold-adapted type I pullulanase for efficient amylopectin hydrolysis. Journal of Biotechnology, 2020, 313, 39-47.	3.8	15
111	Biotechnology and bioengineering of pullulanase: state of the art and perspectives. World Journal of Microbiology and Biotechnology, 2021, 37, 43.	3.6	15
112	Enzymatic enantioselective transcyanation of silicon-containing aliphatic ketone with (S)-hydroxynitrile lyase from Manihot esculenta. Applied Microbiology and Biotechnology, 2004, 66, 27-33.	3.6	14
113	Easily measurable pH as an indicator of the effectiveness of the aqueous cholinium ionic liquid-based pretreatment of lignocellulose. RSC Advances, 2014, 4, 55635-55639.	3.6	14
114	Mechanistic insights into the effect of imidazolium ionic liquid on lipid production by Geotrichum fermentans. Biotechnology for Biofuels, 2016, 9, 266.	6.2	14
115	The effect of deep eutectic solvents on the asymmetric hydrolysis of styrene oxide by mung bean epoxide hydrolases. Bioresources and Bioprocessing, 2018, 5, .	4.2	14
116	Using deep eutectic solvents to improve the biocatalytic reduction of 2-hydroxyacetophenone to (R)-1-phenyl-1,2-ethanediol by Kurthia gibsonii SCO312. Molecular Catalysis, 2020, 484, 110773.	2.0	14
117	Effects of Alcohol Compounds on the Growth and Lipid Accumulation of Oleaginous Yeast Trichosporon fermentans. PLoS ONE, 2012, 7, e46975.	2.5	14
118	Effects of stocking density and decreased carbon supply on the growth and photosynthesis in the farmed seaweed, Pyropia haitanensis (Bangiales, Rhodophyta). Journal of Applied Phycology, 2017, 29, 3057-3065.	2.8	13
119	Metabolic engineering of a robust <i>Escherichia coli</i> strain with a dual protection system. Biotechnology and Bioengineering, 2019, 116, 3333-3348.	3.3	13
120	Novel antibacterial polysaccharides produced by endophyte Fusarium solani DO7. Bioresource Technology, 2019, 288, 121596.	9.6	13
121	Effect of Ionic Liquids on Catalytic Characteristics of Horse Liver Alcohol Dehydrogenase. Chinese Journal of Chemistry, 2006, 24, 1643-1647.	4.9	12
122	Enzymatic characterization of a recombinant carbonyl reductase from Acetobacter sp. CCTCC M209061. Bioresources and Bioprocessing, 2017, 4, 39.	4.2	12
123	Effects of seawater acidification and alkalization on the farmed seaweed, Pyropia haitanensis (Bangiales, Rhodophyta), grown under different irradiance conditions. Algal Research, 2018, 31, 413-420.	4.6	12
124	Efficient Production of 1,3â€Dioleoylâ€2â€Palmitoylglycerol through <i>Rhodococcus opacus</i> Fermentation. JAOCS, Journal of the American Oil Chemists' Society, 2020, 97, 851-860.	1.9	12
125	Novel efficient procedure for biodiesel synthesis from waste oils with high acid value using 1-sulfobutyl-3-methylimidazolium hydrosulfate ionic liquid as the catalyst. Chinese Journal of Chemical Engineering, 2017, 25, 1519-1523.	3.5	11
126	Photosynthetic behaviors in response to intertidal zone and algal mat density in Ulva lactuca (Chlorophyta) along the coast of Nan'ao Island, Shantou, China. Environmental Science and Pollution Research, 2019, 26, 13346-13353.	5.3	11

#	Article	IF	CITATIONS
127	Energy- and cost-effective non-sterilized fermentation of 2,3-butanediol by an engineered <i>Klebsiella pneumoniae</i> OU7 with an anti-microbial contamination system. Green Chemistry, 2020, 22, 8584-8593.	9.0	11
128	Editorial: Enzyme or Whole Cell Immobilization for Efficient Biocatalysis: Focusing on Novel Supporting Platforms and Immobilization Techniques. Frontiers in Bioengineering and Biotechnology, 2021, 9, 620292.	4.1	11
129	Highly enantioselective resolution of racemic 1-phenyl-1,2-ethanediol to (S)-1-phenyl-1,2-ethanediol by Kurthia gibsonii SC0312 in a biphasic system. Journal of Biotechnology, 2020, 308, 21-26.	3.8	10
130	Highly Efficient Regioselective Synthesis of 5′-O-lauroyl-5-azacytidine Catalyzed by Candida antarctica Lipase B. Applied Biochemistry and Biotechnology, 2008, 151, 21-28.	2.9	9
131	Evaluating the influence of inhibitors present in lignocellulosic hydrolysates on the cell membrane integrity of oleaginous yeast Trichosporon fermentans by flow cytometry. Process Biochemistry, 2014, 49, 395-401.	3.7	9
132	Efficient biocatalytic stereoselective reduction of methyl acetoacetate catalyzed by whole cells of engineered <i>E. coli</i> . RSC Advances, 2018, 8, 9970-9978.	3.6	9
133	Preparation and Characterization of Oil Rich in Odd Chain Fatty Acids from <i>Rhodococcus opacus</i> PD630. JAOCS, Journal of the American Oil Chemists' Society, 2020, 97, 25-33.	1.9	9
134	Inhibition of Cronobacter sakazakii in reconstituted infant formula using triglycerol monolaurate and its effect on the sensory properties of infant formula. International Journal of Food Microbiology, 2020, 320, 108518.	4.7	9
135	Discovery of dipeptidyl peptidase 4 inhibitory peptides from Largemouth bass (Micropterus salmoides) by a comprehensive approach. Bioorganic Chemistry, 2020, 105, 104432.	4.1	9
136	Combinatorial synthetic pathway fine-tuning and cofactor regeneration for metabolic engineering of Escherichia coli significantly improve production of D-glucaric acid. New Biotechnology, 2020, 59, 51-58.	4.4	9
137	Biosynthesis of Alanyl-Histidine Dipeptide Catalyzed by Papain Immobilized on Magnetic Nanocrystalline Cellulose in Deep Eutectic Solvents. Applied Biochemistry and Biotechnology, 2020, 192, 573-584.	2.9	9
138	Preparation, structural elucidation and immunomodulatory activity of a polysaccharide from Millettia Speciosa Champ. Industrial Crops and Products, 2022, 182, 114889.	5.2	9
139	Highly selective resolution of racemic 1â€phenylâ€1,2â€ethanediol by a novel strain <i>Kurthia gibsonii</i> <scp>SC</scp> 0312. Letters in Applied Microbiology, 2019, 68, 446-454.	2.2	8
140	Highly efficient asymmetric reduction of 2-octanone in biphasic system by immobilized Acetobacter sp. CCTCC M209061 cells. Journal of Biotechnology, 2019, 299, 37-43.	3.8	8
141	Facile and Green Production of Human Milk Fat Substitute through <i>Rhodococcus opacus</i> Fermentation. Journal of Agricultural and Food Chemistry, 2020, 68, 9368-9376.	5.2	8
142	Sequential co-immobilization of multienzyme nanodevices based on SpyCatcher and SpyTag for robust biocatalysis. Molecular Catalysis, 2021, 510, 111673.	2.0	8
143	Significantly enhancing the biocatalytic synthesis of chiral alcohols by semi-rationally engineering an anti-Prelog carbonyl reductase from Acetobacter sp. CCTCC M209061. Molecular Catalysis, 2019, 479, 110613.	2.0	7
144	Growth and photosynthesis by Gracilariopsis lemaneiformis (Gracilariales, Rhodophyta) in response to different stocking densities along Nan'ao Island coastal waters. Aquaculture, 2019, 501, 279-284.	3.5	7

#	Article	IF	CITATIONS
145	A novel magnetic carbon-based solid acid catalyst suitable for efficient hydrolysis of cellulose. Biomass Conversion and Biorefinery, 2023, 13, 2207-2215.	4.6	7
146	Efficient Asymmetric Reduction of 4-(Trimethylsilyl)-3-Butyn-2-One by Candida parapsilosis Cells in an Ionic Liquid-Containing System. PLoS ONE, 2012, 7, e37641.	2.5	6
147	Effects of CO2 supply on growth and photosynthetic ability of young sporophytes of the economic seaweed Sargassum fusiforme (Sargassaceae, Phaeophyta). Journal of Applied Phycology, 2019, 31, 615-624.	2.8	6
148	Biomimetic Mineralization of Prussian Blue Analogue-Incorporated Glucose Oxidase Hybrid Catalyst for Glucose Detection. Catalysis Letters, 2022, 152, 689-698.	2.6	6
149	Efficient enzymatic regioselective benzoylation of 5â€fluorouridine catalysed by Novozym 435. Journal of Chemical Technology and Biotechnology, 2008, 83, 814-820.	3.2	5
150	Biocatalytic Reduction of HMF to 2,5-Bis(hydroxymethyl)furan by HMF-Tolerant Whole Cells. ChemSusChem, 2017, 10, 304-304.	6.8	5
151	Characterization of a Novel Methylaspartate Ammonia Lyase from <i>E. coli O157:H7</i> for Efficient Asymmetric Synthesis of Unnatural Amino Acids. ACS Sustainable Chemistry and Engineering, 2020, 8, 329-334.	6.7	5
152	In-situ construction of enzyme-copper nucleotide composite for efficient chemo-enzymatic cascade reaction. Applied Catalysis A: General, 2020, 608, 117899.	4.3	5
153	Hydrolysis of corn stover pretreated by DESs with carbon-based solid acid catalyst. SN Applied Sciences, 2020, 2, 1.	2.9	5
154	Peroxidase Encapsulated in Peroxidase Mimics via <i>inâ€situ</i> Assembly with Enhanced Catalytic Performance. ChemCatChem, 2020, 12, 1996-1999.	3.7	5
155	Enhancing the thermostability and activity of uronate dehydrogenase from Agrobacterium tumefaciens LBA4404 by semi-rational engineering. Bioresources and Bioprocessing, 2019, 6, .	4.2	5
156	Asymmetric reduction of ethyl acetoacetate catalyzed by immobilized Acetobacter sp. CCTCC M209061 cells in hydrophilic ionic liquid hybrid system. Biotechnology and Bioprocess Engineering, 2015, 20, 324-332.	2.6	4
157	Using multiple site-directed modification of epoxide hydrolase to significantly improve its enantioselectivity in hydrolysis of rac-glycidyl phenyl ether. Chinese Journal of Chemical Engineering, 2020, 28, 2181-2189.	3.5	4
158	Efficient protein expression in a robust Escherichia coli strain and its application for kinetic resolution of racemic glycidyl o-methylphenyl ether in high concentration. Biochemical Engineering Journal, 2020, 158, 107573.	3.6	4
159	Designing a Highly Stable Enzyme–Graphene Oxide Biohybrid as a Sensitive Biorecognition Module for Biosensor Fabrication with Superior Performance and Stability. ACS Sustainable Chemistry and Engineering, 2022, 10, 2971-2983.	6.7	4
160	Two-step, one-pot enzymatic synthesis of cefprozil from -phenylacetamido-3-propenyl-cephalosporanic acid (GPRA). Biocatalysis and Biotransformation, 2008, 26, 321-326.	2.0	3
161	Enzyme Nanocarriers. , 2019, , 153-168.		3
162	Immobilization of Cofactor Self-Sufficient Recombinant Escherichia coli for Enantioselective Biosynthesis of (R)-1-Phenyl-1,2-Ethanediol. Frontiers in Bioengineering and Biotechnology, 2020, 8, 17.	4.1	3

#	Article	IF	CITATIONS
163	Antifungal Effect of Triglycerol Monolaurate Synthesized by Lipozyme 435-Mediated Esterification. Journal of Microbiology and Biotechnology, 2020, 30, 561-570.	2.1	3
164	Improving catalytic efficiency of endoxylanase for degrading corncob xylan to produce xylooligosaccharides by fusing a β-xylosidase. Industrial Crops and Products, 2022, 176, 114349.	5.2	3
165	Biocatalytic Epoxidation of Cyclooctene to 1,2-Epoxycyclooctane by a Newly Immobilized Aspergillus niger Lipase. Catalysts, 2020, 10, 781.	3.5	2
166	Marked improvement in the asymmetric reduction of 2-hydroxyacetophenone with mut-AcCR in a biphasic system. Molecular Catalysis, 2020, 488, 110903.	2.0	2
167	Extraction and characterizationÂof a functional protein from Millettia speciosa Champ. leaf. Natural Product Research, 2021, , 1-8.	1.8	2
168	Structure-guided protein engineering of ammonia lyase for efficient synthesis of sterically bulky unnatural amino acids. Bioresources and Bioprocessing, 2021, 8, .	4.2	2
169	Recent Advances in Enzymatic Catalysis for Preparation of High Value-Added Chemicals from Carbon Dioxide. Acta Chimica Sinica, 2019, 77, 1099.	1.4	2
170	Metal organic frameworks for biocatalysis. , 2022, , 267-300.		2
171	Immobilization of engineered E. coli cells for asymmetric reduction of methyl acetoacetate to methyl-(R)-3-hydroxybutyrate. Bioresources and Bioprocessing, 2022, 9, .	4.2	2
172	Modular Metabolic Engineering of <i>Bacillus licheniformis</i> for Efficient 2,3-Butanediol Production by Consolidated Bioprocessing of Jerusalem Artichoke Tubers. ACS Sustainable Chemistry and Engineering, 2022, 10, 9624-9634.	6.7	2
173	Enzyme-Oriented Strategies to Mitigate Polluting Agents from Environment. Microorganisms for Sustainability, 2021, , 267-290.	0.7	1
174	Biocatalysis in Ionic Liquids. , 2019, , 1-9.		1
175	Asymmetric Hydrolysis of Styrene Oxide Catalyzed by Mung Bean Epoxide Hydrolase in Organic Solvent/Buffer Biphasic System. Chinese Journal of Catalysis, 2014, 32, 1557-1563.	14.0	1
176	Asymmetric Biosynthesis of (S)-1-(4-Methoxyphenyl)ethanol in Various Reac-tion Systems. Chinese Journal of Catalysis, 2014, 32, 1003-1010.	14.0	1
177	Preparation of Cellulose-Derived Solid Acid Catalyst and Its Use for Production of Biodiesel from Waste Oils with High Acid Value. Chinese Journal of Catalysis, 2014, 32, 1755-1761.	14.0	1
178	Synthesis and Functional Identification of Oligopeptides Derived from the α3/5-Conotoxins. International Journal of Peptide Research and Therapeutics, 2018, 24, 251-258.	1.9	0
179	Front Cover Image, Volume 116, Number 12, December 2019. Biotechnology and Bioengineering, 2019, 116, i.	3.3	0
180	Sucralose-Derived Solid Acid Catalysts Highly Selective Production of Cellulosic Hydrolysate: Source for Microbial Lipid Synthesis. Waste and Biomass Valorization, 0, , 1.	3.4	0