
Santhosh Kumar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8843988/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Plastic biodegradation: Frontline microbes and their enzymes. Science of the Total Environment, 2021, 759, 143536.	3.9	277
2	Biohydrogen production from sugarcane bagasse hydrolysate: effects of pH, S/X, Fe2+, and magnetite nanoparticles. Environmental Science and Pollution Research, 2017, 24, 8790-8804.	2.7	132
3	Simultaneous removal of heavy metals and cyanate in a wastewater sample using immobilized cyanate hydratase on magnetic-multiwall carbon nanotubes. Journal of Hazardous Materials, 2019, 363, 73-80.	6.5	76
4	Environmental Impacts of Microplastics and Nanoplastics: A Current Overview. Frontiers in Microbiology, 2021, 12, 768297.	1.5	69
5	Production of gellan gum, an exopolysaccharide, from biodiesel-derived waste glycerol by Sphingomonas spp 3 Biotech, 2018, 8, 71.	1.1	64
6	Production of β-xylanase by a Thermomyces lanuginosus MC 134 mutant on corn cobs and its application in biobleaching of bagasse pulp. Journal of Bioscience and Bioengineering, 2009, 107, 494-498.	1.1	43
7	Cold plasma for the preservation of aquatic food products: An overview. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 4407-4425.	5.9	43
8	High level expression of a recombinant xylanase by Pichia pastoris NC38 in a 5L fermenter and its efficiency in biobleaching of bagasse pulp. Bioresource Technology, 2011, 102, 9723-9729.	4.8	39
9	Biotechnological potential of <i>Beauveria bassiana</i> as a source of novel biocatalysts and metabolites. Critical Reviews in Biotechnology, 2020, 40, 1019-1034.	5.1	38
10	Hyper production of cellulase-free xylanase by Thermomyces lanuginosus SSBP on bagasse pulp and its application in biobleaching. Applied Microbiology and Biotechnology, 2009, 81, 887-893.	1.7	37
11	Response surface methodological approach to optimize the nutritional parameters for enhanced production of -amylase in solid state fermentation by Thermomyces lanuginosus. African Journal of Biotechnology, 2005, 4, 708-716.	0.3	31
12	A case-control study on oral health-related quality of life in kidney disease patients undergoing haemodialysis. Clinical Oral Investigations, 2015, 19, 1235-1243.	1.4	30
13	Recent advances in microbial glutaminase production and applications—a concise review. Critical Reviews in Biotechnology, 2019, 39, 944-963.	5.1	30
14	Biodegradation of glycerol using bacterial isolates from soil under aerobic conditions. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2014, 49, 85-92.	0.9	24
15	Structure of peanut shell xylan and its conversion to oligosaccharides. Process Biochemistry, 2018, 72, 124-129.	1.8	24
16	A novel strategy for the efficient removal of toxic cyanate by the combinatorial use of recombinant enzymes immobilized on aminosilane modified magnetic nanoparticles. Bioresource Technology, 2018, 253, 105-111.	4.8	21
17	Enhanced xylanase and endoglucanase production from Beauveria bassiana SAN01, an entomopathogenic fungal endophyte. Fungal Biology, 2021, 125, 39-48.	1.1	21
18	Xylan from bambara and cowpea biomass and their structural elucidation. International Journal of Biological Macromolecules, 2019, 132, 987-993.	3.6	20

Santhosh Kumar

#	Article	IF	CITATIONS
19	Deep eutectic solvent pretreatment of Bambara groundnut haulm for enhanced saccharification and bioethanol production. Biomass Conversion and Biorefinery, 2022, 12, 3525-3533.	2.9	20
20	Nutritional quality and acceptability of Buddleja saligna herbal tea. Journal of Food Science and Technology, 2015, 52, 7519-7524.	1.4	14
21	Antimicrobial efficacy of nisin, oregano and ultrasound against Escherichia coli O157:H7 and Listeria monocytogenes on lettuce. LWT - Food Science and Technology, 2021, 139, 110522.	2.5	14
22	Expression of a novel recombinant cyanate hydratase (rTl-Cyn) in Pichia pastoris , characteristics and applicability in the detoxification of cyanate. Bioresource Technology, 2017, 238, 582-588.	4.8	12
23	Enzymatic approaches in the bioprocessing of shellfish wastes. 3 Biotech, 2021, 11, 367.	1.1	12
24	Deep eutectic solvents in the pretreatment of feedstock for efficient fractionation of polysaccharides: current status and future prospects. Biomass Conversion and Biorefinery, 2022, 12, 171-195.	2.9	11
25	Beauveria bassiana Xylanase: Characterization and Wastepaper Deinking Potential of a Novel Glycosyl Hydrolase from an Endophytic Fungal Entomopathogen. Journal of Fungi (Basel, Switzerland), 2021, 7, 668.	1.5	9
26	A comparative analysis of GH18 chitinases and their isoforms from Beauveria bassiana: An in-silico approach. Process Biochemistry, 2021, 100, 207-216.	1.8	8
27	Pear Juice Clarification Using Polygalacturonase from <i>Beauveria bassiana</i> : Effects on Rheological, Antioxidant and Quality Properties. Polish Journal of Food and Nutrition Sciences, 2022, , 57-67.	0.6	6
28	Chapter 5 Thermostable Enzymes and Their Industrial Applications. , 2016, , 115-162.		5
29	Structural and functional insights into fungal glutaminase using a computational approach. Process Biochemistry, 2022, 117, 76-89.	1.8	5
30	Nanocellulose in tissue engineering and bioremediation: mechanism of action. Bioengineered, 2022, 13, 12823-12833.	1.4	5
31	Isolation, biochemical characterization, and development of a biodegradable antimicrobial film from Cirrhinus mrigala scale collagen. Environmental Science and Pollution Research, 2022, 29, 18840-18850.	2.7	4
32	Bacterial bioactive metabolites as therapeutic agents: From production to action. Sustainable Chemistry and Pharmacy, 2022, 27, 100650.	1.6	4
33	Simultaneous saccharification and bioethanol production from underutilized biomass, cowpea haulm using co-cultures of Saccharomyces cerevisiae (BY4743) and Scheffersomyces stipitis (PsY633). Biomass Conversion and Biorefinery, 0, , 1.	2.9	3
34	Purification and characterisation of uricase from Bacillus subtilis SP6. Process Biochemistry, 2022, 113, 55-61.	1.8	3
35	Crystal structure of a thermophilic fungal cyanase and its implications on the catalytic mechanism for bioremediation. Scientific Reports, 2021, 11, 277.	1.6	2
36	Characterisation, pathogenicity and hydrolytic enzyme profiling of selected Fusarium species and their inhibition by novel coumarins. Archives of Microbiology, 2021, 203, 3495-3508.	1.0	2

Santhosh Kumar

#	Article	IF	CITATIONS
37	Technological Advances in Biohydrogen Production from Microalgae. , 2017, , 347-360.		2
38	Optimisation of the combined treatment of nisin, oregano and ultrasound in decontaminating Listeria monocytogenes and Escherichia coli O157:H7 on cabbage. Future Foods, 2022, 5, 100141.	2.4	2
39	Inducible character of βâ€xylanase in a hyperproducing mutant of <i>Thermomyces lanuginosus</i> . Engineering in Life Sciences, 2009, 9, 298-302.	2.0	1
40	An Overview of Raw Starch Digesting Enzymes and Their Applications in Biofuel Development. , 2021, , 49-85.		1
41	Genetic Engineering Tools for Enhancing Lipid Production in Microalgae. , 2015, , 119-127.		О
42	Data Analysis and Network Study of Non-small-cell Lung Cancer Biomarkers. Advances in Intelligent Systems and Computing, 2020, , 265-272.	0.5	0