Carlos M Opazo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8843789/publications.pdf

Version: 2024-02-01

50 papers 3,528 citations

32 h-index 223800 46 g-index

52 all docs 52 docs citations 52 times ranked 4913 citing authors

#	Article	IF	CITATIONS
1	Systematic Review: Quantitative Susceptibility Mapping (QSM) of Brain Iron Profile in Neurodegenerative Diseases. Frontiers in Neuroscience, 2021, 15, 618435.	2.8	83
2	The ubiquitin proteasome system and schizophrenia. Lancet Psychiatry, the, 2020, 7, 528-537.	7.4	43
3	Redox active metals in neurodegenerative diseases. Journal of Biological Inorganic Chemistry, 2019, 24, 1141-1157.	2.6	60
4	Blood and brain protein levels of ubiquitin-conjugating enzyme E2K (UBE2K) are elevated in individuals with schizophrenia. Journal of Psychiatric Research, 2019, 113, 51-57.	3.1	14
5	Elevated ubiquitinated proteins in brain and blood of individuals with schizophrenia. Scientific Reports, 2019, 9, 2307.	3.3	31
6	Wnt/ \hat{l}^2 -catenin signaling stimulates the expression and synaptic clustering of the autism-associated Neuroligin 3 gene. Translational Psychiatry, 2018, 8, 45.	4.8	27
7	Metalloregulation of Protein Clearance: New Therapeutic Avenues for Neurodegenerative Diseases. , 2017, , 363-376.		O
8	Metallo-pathways to Alzheimer's disease: lessons from genetic disorders of copper trafficking. Metallomics, 2016, 8, 831-839.	2.4	35
9	Differential Membrane Toxicity of Amyloid- \hat{l}^2 Fragments by Pore Forming Mechanisms. Journal of Alzheimer's Disease, 2016, 51, 689-699.	2.6	46
10	Features of alpha-synuclein that could explain the progression and irreversibility of Parkinson's disease. Frontiers in Neuroscience, 2015, 9, 59.	2.8	97
11	Extracellular αâ€synuclein alters synaptic transmission in brain neurons by perforating the neuronal plasma membrane. Journal of Neurochemistry, 2015, 132, 731-741.	3.9	71
12	Alzheimer's $\hat{Al^2}$ interacts with cellular prion protein inducing neuronal membrane damage and synaptotoxicity. Neurobiology of Aging, 2015, 36, 1369-1377.	3.1	37
13	Low concentrations of ethanol protect against synaptotoxicity induced by $\hat{Al^2}$ in hippocampal neurons. Neurobiology of Aging, 2015, 36, 845-856.	3.1	29
14	Fibrinogen nitrotyrosination after ischemic stroke impairs thrombolysis and promotes neuronal death. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 421-428.	3.8	24
15	PSD95 Suppresses Dendritic Arbor Development in Mature Hippocampal Neurons by Occluding the Clustering of NR2B-NMDA Receptors. PLoS ONE, 2014, 9, e94037.	2.5	63
16	Copper-uptake is critical for the down regulation of synapsin and dynamin induced by neocuproine: modulation of synaptic activity in hippocampal neurons. Frontiers in Aging Neuroscience, 2014, 6, 319.	3.4	16
17	The Pathophysiology of Axonal Transport in Alzheimer's Disease. Journal of Alzheimer's Disease, 2014, 43, 1097-1113.	2.6	27
18	Copper: from neurotransmission to neuroproteostasis. Frontiers in Aging Neuroscience, 2014, 6, 143.	3.4	112

#	Article	IF	Citations
19	Overrepresentation of Glutamate Signaling in Alzheimer's Disease: Network-Based Pathway Enrichment Using Meta-Analysis of Genome-Wide Association Studies. PLoS ONE, 2014, 9, e95413.	2.5	52
20	Rapamycin protects against $\hat{Al^2}$ -induced synaptotoxicity by increasing presynaptic activity in hippocampal neurons. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 1495-1501.	3.8	18
21	Phosphorylation of Amyloid Precursor Protein at Threonine 668 Is Essential for Its Copper-responsive Trafficking in SH-SY5Y Neuroblastoma Cells. Journal of Biological Chemistry, 2014, 289, 11007-11019.	3.4	41
22	Nature of the neurotoxic membrane actions of amyloid- \hat{l}^2 on hippocampal neurons in Alzheimer's disease. Neurobiology of Aging, 2014, 35, 472-481.	3.1	55
23	Inhibition of amyloid beta-induced synaptotoxicity by a pentapeptide derived from the glycine zipper region of the neurotoxic peptide. Neurobiology of Aging, 2013, 34, 2805-2814.	3.1	41
24	Ibuprofen Inhibits the Synaptic Failure Induced by the Amyloid- \hat{l}^2 Peptide in Hippocampal Neurons. Journal of Alzheimer's Disease, 2013, 35, 463-473.	2.6	16
25	A novel functional low-density lipoprotein receptor-related protein 6 gene alternative splice variant is associated with Alzheimer's disease. Neurobiology of Aging, 2013, 34, 1709.e9-1709.e18.	3.1	39
26	Nitro-Oxidative Stress after Neuronal Ischemia Induces Protein Nitrotyrosination and Cell Death. Oxidative Medicine and Cellular Longevity, 2013, 2013, 1-9.	4.0	36
27	Soluble A \hat{I}^2 1-40 Peptide Increases Excitatory Neurotransmission and Induces Epileptiform Activity in Hippocampal Neurons. Journal of Alzheimer's Disease, 2011, 23, 673-687.	2.6	30
28	Biphasic effects of copper on neurotransmission in rat hippocampal neurons. Journal of Neurochemistry, 2011, 119, 78-88.	3.9	66
29	Synaptotoxicity of Alzheimer Beta Amyloid Can Be Explained by Its Membrane Perforating Property. PLoS ONE, 2010, 5, e11820.	2.5	134
30	\hat{l}^2 -Amyloid Causes Depletion of Synaptic Vesicles Leading to Neurotransmission Failure. Journal of Biological Chemistry, 2010, 285, 2506-2514.	3.4	153
31	Canonical Wnt3a Modulates Intracellular Calcium and Enhances Excitatory Neurotransmission in Hippocampal Neurons. Journal of Biological Chemistry, 2010, 285, 18939-18947.	3.4	62
32	Pore-Forming Neurotoxin-Like Mechanism for A \hat{l}^2 Oligomer-Induced Synaptic Failure. , 2009, , 13-21.		2
33	Intracellular amyloid formation in muscle cells of $A\hat{l}^2$ -transgenic Caenorhabditis elegans: determinants and physiological role in copper detoxification. Molecular Neurodegeneration, 2009, 4, 2.	10.8	39
34	Alzheimer \hat{l}^2 -amyloid blocks epileptiform activity in hippocampal neurons. Molecular and Cellular Neurosciences, 2009, 41, 420-428.	2.2	18
35	The Aβcentric Pathway of Alzheimer's Disease. , 2007, , 5-36.		1
36	Radioiodinated clioquinol as a biomarker for beta-amyloid: Zn2+ complexes in Alzheimer's disease. Aging Cell, 2006, 5, 69-79.	6.7	74

#	Article	IF	CITATIONS
37	Alzheimer disease \hat{l}^2 -amyloid activity mimics cholesterol oxidase. Journal of Clinical Investigation, 2005, 115, 2556-2563.	8.2	125
38	The Nâ€terminal copperâ€binding domain of the amyloid precursor protein protects against Cu 2+ neurotoxicity in vivo. FASEB Journal, 2004, 18, 1701-1703.	0.5	40
39	Neurodegenerative processes in Alzheimer's disease. , 2004, , 363-368.		2
40	Copper reduction by copper binding proteins and its relation to neurodegenerative diseases. BioMetals, 2003, 16, 91-98.	4.1	73
41	Metalloenzyme-like Activity of Alzheimer's Disease Î ² -Amyloid. Journal of Biological Chemistry, 2002, 277, 40302-40308.	3.4	536
42	Vitamin E But Not $17\hat{l}^2$ -Estradiol Protects against Vascular Toxicity Induced by \hat{l}^2 -Amyloid Wild Type and the Dutch Amyloid Variant. Journal of Neuroscience, 2002, 22, 3081-3089.	3.6	51
43	Cysteine 144 Is a Key Residue in the Copper Reduction by the \hat{I}^2 -Amyloid Precursor Protein. Journal of Neurochemistry, 2001, 73, 1288-1292.	3.9	51
44	The role of oxidative stress in the toxicity induced by amyloid β-peptide in Alzheimer's disease. Progress in Neurobiology, 2000, 62, 633-648.	5.7	347
45	Amyloid-ß-peptide reduces copper(II) to copper(I) independent of its aggregation state. Biological Research, 2000, 33, 125-31.	3.4	33
46	Crosslinking of amyloid-l ² peptide to brain acetylcholinesterase. Molecular and Chemical Neuropathology, 1998, 33, 39-49.	1.0	10
47	Intracellular Ca2+ homeostasis in rat round spermatids. Biology of the Cell, 1998, 90, 391-398.	2.0	7
48	Stable Complexes Involving Acetylcholinesterase and Amyloid-β Peptide Change the Biochemical Properties of the Enzyme and Increase the Neurotoxicity of Alzheimer's Fibrils. Journal of Neuroscience, 1998, 18, 3213-3223.	3.6	264
49	Acetylcholinesterase promotes the aggregation of amyloid- \hat{l}^2 -peptide fragments by forming a complex with the growing fibrils 1 1Edited by A. R. Fersht. Journal of Molecular Biology, 1997, 272, 348-361.	4.2	274
50	On stage single cell identification of rat spermatogenic cells. Biology of the Cell, 1997, 89, 53-66.	2.0	23