
Jeong Gon Son

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8843623/publications.pdf Version: 2024-02-01

LEONG CON SON

#	Article	IF	CITATIONS
1	Highly aligned aramid nanofibrillar nanocomposites for enhanced dynamic mechanical properties. Composites Part B: Engineering, 2022, 229, 109467.	12.0	17
2	Intrinsically Stretchable and Printable Lithium-Ion Battery for Free-Form Configuration. ACS Nano, 2022, 16, 2271-2281.	14.6	19
3	Facile Achievement of Complementary Resistive Switching in Block Copolymer Micelleâ€Based Resistive Memories. Macromolecular Rapid Communications, 2022, 43, e2100686.	3.9	2
4	Plasma-Assisted Mechanochemistry to Covalently Bond Ion-Conducting Polymers to Ni-Rich Cathode Materials for Improved Cyclic Stability and Rate Capability. ACS Applied Energy Materials, 2022, 5, 4808-4816.	5.1	4
5	FeS2@N-C nanorattles encapsulated in N/S dual-doped graphene/carbon nanotube network composites for high performance and high rate capability anodes of sodium-ion batteries. Chemical Engineering Journal, 2022, 439, 135678.	12.7	28
6	Anisotropic Alignment of Bacterial Nanocellulose Ionogels for Unconventionally High Combination of Stiffness and Damping. ACS Applied Materials & Interfaces, 2022, 14, 30056-30066.	8.0	5
7	Shear-Rolling Process for Unidirectionally and Perpendicularly Oriented Sub-10-nm Block Copolymer Patterns on the 4 in Scale. ACS Nano, 2021, 15, 8549-8558.	14.6	16
8	Gram-scale synthesis of rGO wrapped porous α-Fe2O3 as an advanced anode material for Na-ion batteries with superior cyclic stability. Composites Part B: Engineering, 2021, 220, 108995.	12.0	16
9	The role of graphene patterning in field-effect transistor sensors to detect the tau protein for Alzheimer's disease: Simplifying the immobilization process and improving the performance of graphene-based immunosensors. Biosensors and Bioelectronics, 2021, 192, 113519.	10.1	17
10	Chiral Plasmonic Nanowaves by Tilted Assembly of Unidirectionally Aligned Block Copolymers with Buckling-Induced Microwrinkles. ACS Nano, 2021, 15, 17463-17471.	14.6	10
11	Chiral Magneto-Optical Properties of Supra-Assembled Fe ₃ O ₄ Nanoparticles. ACS Applied Materials & Interfaces, 2021, 13, 54301-54307.	8.0	11
12	Improved electrical performance and transparency of bottom-gate, bottom-contact single-walled carbon nanotube transistors using graphene source/drain electrodes. Journal of Industrial and Engineering Chemistry, 2020, 81, 488-495.	5.8	8
13	Flexible/Stretchable Supercapacitors with Novel Functionality for Wearable Electronics. Advanced Materials, 2020, 32, e2002180.	21.0	236
14	Buckling Instability Control of 1D Nanowire Networks for a Largeâ€Area Stretchable and Transparent Electrode. Advanced Functional Materials, 2020, 30, 1910214.	14.9	42
15	Highly Efficient Large-Area Organic Photovoltaic Module with a 350 nm Thick Active Layer Using a Random Terpolymer Donor. Chemistry of Materials, 2020, 32, 3469-3479.	6.7	19
16	Stretchable Lithium-Ion Battery Based on Re-entrant Micro-honeycomb Electrodes and Cross-Linked Gel Electrolyte. ACS Nano, 2020, 14, 3660-3668.	14.6	74
17	Universal perpendicular orientation of block copolymer microdomains using a filtered plasma. Nature Communications, 2019, 10, 2912.	12.8	41
18	Fabrication of a MoS ₂ /Graphene Nanoribbon Heterojunction Network for Improved Thermoelectric Properties. Advanced Materials Interfaces, 2019, 6, 1901333.	3.7	26

JEONG GON SON

#	Article	IF	CITATIONS
19	Short-Chain Polyselenosulfide Copolymers as Cathode Materials for Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2019, 11, 45785-45795.	8.0	36
20	Controlled Fabrication of 3D Chiral Microwrinkles via Asymmetrical and Biaxial Bucklings. Advanced Functional Materials, 2019, 29, 1808979.	14.9	18
21	Multiple Transfer of Layer-by-Layer Nanofunctional Films by Adhesion Controls. ACS Applied Materials & Interfaces, 2019, 11, 48476-48486.	8.0	4
22	2D reentrant micro-honeycomb structure of graphene-CNT in polyurethane: High stretchability, superior electrical/thermal conductivity, and improved shape memory properties. Composites Part B: Engineering, 2019, 162, 580-588.	12.0	52
23	Etchingâ€Assisted Crumpled Graphene Wrapped Spiky Iron Oxide Particles for Highâ€Performance Liâ€Ion Hybrid Supercapacitor. Small, 2018, 14, e1704209.	10.0	63
24	Highly thermally conductive and mechanically robust polyamide/graphite nanoplatelet composites via mechanochemical bonding techniques with plasma treatment. Composites Science and Technology, 2018, 160, 245-254.	7.8	35
25	Mechanical Fatigue Resistance of Piezoelectric PVDF Polymers. Micromachines, 2018, 9, 503.	2.9	19
26	Coaxial struts and microfractured structures of compressible thermoelectric foams for self-powered pressure sensors. Nanoscale, 2018, 10, 18370-18377.	5.6	23
27	Significantly reduced thermal conductivity and enhanced thermoelectric properties of single- and bi-layer graphene nanomeshes with sub-10 nm neck-width. Nano Energy, 2017, 35, 26-35.	16.0	90
28	Nitrogen-doped graphene-wrapped iron nanofragments for high-performance oxygen reduction electrocatalysts. Journal of Nanoparticle Research, 2017, 19, 1.	1.9	36
29	Interfacial Energy-Controlled Top Coats for Gyroid/Cylinder Phase Transitions of Polystyrene- <i>block</i> -polydimethylsiloxane Block Copolymer Thin Films. ACS Applied Materials & Interfaces, 2017, 9, 17427-17434.	8.0	14
30	Highly Ordered Nanoconfinement Effect from Evaporation-Induced Self-Assembly of Block Copolymers on In Situ Polymerized PEDOT:Tos. ACS Macro Letters, 2017, 6, 386-392.	4.8	19
31	Biaxial Stretchability and Transparency of Ag Nanowire 2D Mass-Spring Networks Prepared by Floating Compression. ACS Applied Materials & Interfaces, 2017, 9, 10865-10873.	8.0	39
32	2D reentrant auxetic structures of graphene/CNT networks for omnidirectionally stretchable supercapacitors. Nanoscale, 2017, 9, 13272-13280.	5.6	73
33	Flexible and Robust Thermoelectric Generators Based on All-Carbon Nanotube Yarn without Metal Electrodes. ACS Nano, 2017, 11, 7608-7614.	14.6	191
34	Highly crumpled graphene nano-networks as electrocatalytic counter electrode in photovoltaics. Applied Catalysis B: Environmental, 2016, 192, 342-349.	20.2	21
35	Nickel Nanofoam/Different Phases of Ordered Mesoporous Carbon Composite Electrodes for Superior Capacitive Energy Storage. ACS Applied Materials & Interfaces, 2016, 8, 22516-22525.	8.0	20
36	Reversibly Stretchable, Optically Transparent Radio-Frequency Antennas Based on Wavy Ag Nanowire Networks. ACS Applied Materials & Interfaces, 2016, 8, 2582-2590.	8.0	70

JEONG GON SON

#	Article	IF	CITATIONS
37	Ice-templated Self-assembly of VOPO4–Graphene Nanocomposites for Vertically Porous 3D Supercapacitor Electrodes. Scientific Reports, 2015, 5, 13696.	3.3	60
38	Topcoatâ€Assisted Perpendicular and Straightly Parallel Coexisting Orientations of Block Copolymer Films. Macromolecular Rapid Communications, 2015, 36, 1261-1266.	3.9	13
39	Top oat Dewetting for the Highly Ordered Lateral Alignment of Block Copolymer Microdomains in Thin Films. Advanced Functional Materials, 2015, 25, 913-919.	14.9	20
40	Directed self-assembly of rhombic carbon nanotube nanomesh films for transparent and stretchable electrodes. Journal of Materials Chemistry C, 2015, 3, 2319-2325.	5.5	39
41	Perpendicularly Oriented Block Copolymer Thin Films Induced by Neutral Star Copolymer Nanoparticles. ACS Macro Letters, 2015, 4, 133-137.	4.8	20
42	Seaâ€Urchinâ€Inspired 3D Crumpled Graphene Balls Using Simultaneous Etching and Reduction Process for Highâ€Density Capacitive Energy Storage. Advanced Functional Materials, 2015, 25, 3606-3614.	14.9	53
43	Floating compression of Ag nanowire networks for effective strain release of stretchable transparent electrodes. Nanoscale, 2015, 7, 16434-16441.	5.6	42
44	Combined epitaxial self-assembly of block copolymer lamellae on a hexagonal pre-pattern within microgrooves. Soft Matter, 2015, 11, 4242-4250.	2.7	9
45	Spin self-assembly of highly ordered multilayers of graphene-oxide sheets for improving oxygen barrier performance of polyolefin films. Carbon, 2015, 83, 40-47.	10.3	38
46	Nitrogen-Doped Graphene Nanosheets from Bulk Graphite using Microwave Irradiation. ACS Applied Materials & Interfaces, 2014, 6, 6361-6368.	8.0	110
47	A Top Coat with Solvent Annealing Enables Perpendicular Orientation of Subâ€10 nm Microdomains in Siâ€Containing Block Copolymer Thin Films. Advanced Functional Materials, 2014, 24, 6981-6988.	14.9	62
48	Orientation Control of Block Copolymer Thin Films Placed on Ordered Nanoparticle Monolayers. Macromolecules, 2013, 46, 8144-8151.	4.8	28
49	Subâ€10 nm Graphene Nanoribbon Array Fieldâ€Effect Transistors Fabricated by Block Copolymer Lithography. Advanced Materials, 2013, 25, 4723-4728.	21.0	150
50	Fieldâ€Effect Transistors: Subâ€10 nm Graphene Nanoribbon Array Fieldâ€Effect Transistors Fabricated by Block Copolymer Lithography (Adv. Mater. 34/2013). Advanced Materials, 2013, 25, 4682-4682.	21.0	1
51	High-Aspect-Ratio Perpendicular Orientation of PS- <i>b</i> -PDMS Thin Films under Solvent Annealing. ACS Macro Letters, 2012, 1, 1279-1284.	4.8	117
52	Orientation Change of Diblock Copolymer Thin Films by the Addition of Amphiphilic Surfactants: Effect of Film Thickness and Surfactant Concentration. Macromolecules, 2012, 45, 150-158.	4.8	8
53	Morphology Control in Block Copolymer Films Using Mixed Solvent Vapors. ACS Nano, 2012, 6, 8052-8059.	14.6	198
54	Aligned Sub-10-nm Block Copolymer Patterns Templated by Post Arrays. ACS Nano, 2012, 6, 2071-2077.	14.6	74

JEONG GON SON

#	Article	IF	CITATIONS
55	Assembly of Sub-10-nm Block Copolymer Patterns with Mixed Morphology and Period Using Electron Irradiation and Solvent Annealing. Nano Letters, 2011, 11, 5079-5084.	9.1	113
56	Highly Ordered Square Arrays from a Templated ABC Triblock Terpolymer. Nano Letters, 2011, 11, 2849-2855.	9.1	55
57	Hierarchical Nanostructures by Sequential Selfâ€Assembly of Styreneâ€Dimethylsiloxane Block Copolymers of Different Periods. Advanced Materials, 2011, 23, 634-639.	21.0	95
58	Placement Control of Nanomaterial Arrays on the Surface-Reconstructed Block Copolymer Thin Films. ACS Nano, 2009, 3, 3927-3934.	14.6	91
59	Surfactantâ€Assisted Orientation of Thin Diblock Copolymer Films. Advanced Materials, 2008, 20, 3643-3648.	21.0	57
60	Generalization of the Use of Random Copolymers To Control the Wetting Behavior of Block Copolymer Films. Macromolecules, 2008, 41, 9098-9103.	4.8	110