## Wamberto Antonio Varanda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8843567/publications.pdf

Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Electrophysiological Properties of Rostral Ventrolateral Medulla Presympathetic Neurons<br>Modulated by the Respiratory Network in Rats. Journal of Neuroscience, 2013, 33, 19223-19237.                                        | 1.7 | 103       |
| 2  | Ion and nonelectrolyte permeability properties of channels formed in planar lipid bilayer membranes<br>by the cytolytic toxin from the sea anemone,Stoichactis helianthus. Journal of Membrane Biology,<br>1980, 55, 203-211.   | 1.0 | 91        |
| 3  | The acetylcholine receptor of the neuromuscular junction recognizes mecamylamine as a noncompetitive antagonist. Molecular Pharmacology, 1985, 28, 128-37.                                                                      | 1.0 | 84        |
| 4  | A Novel Approach to Study the Geometry of the Water Lumen of Ion Channels: Colicin Ia Channels in<br>Planar Lipid Bilayers. Journal of Membrane Biology, 1998, 161, 83-92.                                                      | 1.0 | 80        |
| 5  | P2X4 receptors interact with both P2X2 and P2X7 receptors in the form of homotrimers. British<br>Journal of Pharmacology, 2011, 163, 1069-1077.                                                                                 | 2.7 | 60        |
| 6  | Neuroendocrine Regulation of Hydromineral Homeostasis. , 2015, 5, 1465-1516.                                                                                                                                                    |     | 46        |
| 7  | TsTX-IV, a short chain four-disulfide-bridged neurotoxin from Tityus serrulatus venom which acts on<br>Ca2+-activated K+ channels. Toxicon, 1999, 37, 651-660.                                                                  | 0.8 | 45        |
| 8  | Impaired relaxation to acetylcholine in 2K-1C hypertensive rat aortas involves changes in membrane<br>hyperpolarization instead of an abnormal contribution of endothelial factors. General<br>Pharmacology, 2000, 34, 379-389. | 0.7 | 42        |
| 9  | Hurst Analysis Applied to the Study of Single Calcium-activated Potassium Channel Kinetics. Journal of<br>Theoretical Biology, 2000, 206, 343-353.                                                                              | 0.8 | 40        |
| 10 | Modulation of gap junction mediated intercellular communication in TM3 Leydig cells. Journal of Endocrinology, 2003, 177, 327-335.                                                                                              | 1.2 | 36        |
| 11 | Functional and structural study comparing the C-terminal amidated β-neurotoxin Ts1 with its isoform<br>Ts1-G isolated from Tityus serrulatus venom. Toxicon, 2014, 83, 15-21.                                                   | 0.8 | 35        |
| 12 | Purification and characterization of Ts15, the first member of a new α-KTX subfamily from the venom of the Brazilian scorpion Tityus serrulatus. Toxicon, 2011, 58, 54-61.                                                      | 0.8 | 33        |
| 13 | Tityustoxin-K(alpha) blockade of the voltage-gated potassium channel Kv1.3. British Journal of Pharmacology, 2003, 139, 1180-1186.                                                                                              | 2.7 | 29        |
| 14 | Mouse Leydig cells express multiple P2X receptor subunits. Purinergic Signalling, 2009, 5, 277-287.                                                                                                                             | 1.1 | 28        |
| 15 | Intracellular calcium changes in mice Leydig cells are dependent on calcium entry through Tâ€ŧype<br>calcium channels. Journal of Physiology, 2007, 585, 339-349.                                                               | 1.3 | 26        |
| 16 | Intercellular communication between mouse Leydig cells. American Journal of Physiology - Cell<br>Physiology, 1994, 267, C563-C569.                                                                                              | 2.1 | 25        |
| 17 | Interactions of gephyrotoxin with the acetylcholine receptor-ionic channel complex. I. Blockade of the ionic channel. Molecular Pharmacology, 1984, 25, 384-94.                                                                 | 1.0 | 23        |
| 18 | Luteinizing hormone (LH) acts through PKA and PKC to modulate T-type calcium currents and intracellular calcium transients in mice Leydig cells. Cell Calcium, 2011, 49, 191-199.                                               | 1.1 | 22        |

| #  | Article                                                                                                                                                                                             | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Glycine Binding Site of the Synaptic NMDA Receptor in Subpostremal NTS Neurons. Journal of<br>Neurophysiology, 2005, 94, 147-152.                                                                   | 0.9 | 21        |
| 20 | Long-term correlation in single calcium-activated potassium channel kinetics. Physica A: Statistical<br>Mechanics and Its Applications, 2006, 364, 13-22.                                           | 1.2 | 20        |
| 21 | Nitric Oxide Modulates HCN Channels in Magnocellular Neurons of the Supraoptic Nucleus of Rats by<br>an S-Nitrosylation-Dependent Mechanism. Journal of Neuroscience, 2016, 36, 11320-11330.        | 1.7 | 18        |
| 22 | Interactions of gephyrotoxin with the acetylcholine receptor-ionic channel complex. II. Enhancement of desensitization. Molecular Pharmacology, 1984, 25, 395-400.                                  | 1.0 | 18        |
| 23 | Nitric oxide modulates the firing rate of the rat supraoptic magnocellular neurons. Neuroscience, 2008, 155, 359-365.                                                                               | 1.1 | 17        |
| 24 | Neurotensin modulates synaptic transmission in the nucleus of the solitary tract of the rat.<br>Neuroscience, 2005, 130, 309-315.                                                                   | 1.1 | 16        |
| 25 | Ca 2+ Influx is Increased in 2-Kidney, 1-Clip Hypertensive Rat Aorta. Hypertension, 2001, 38, 592-596.                                                                                              | 1.3 | 14        |
| 26 | In vitro differentiation between oxytocin- and vasopressin-secreting magnocellular neurons requires more than one experimental criterion. Molecular and Cellular Endocrinology, 2015, 400, 102-111. | 1.6 | 14        |
| 27 | Hypertonicity increases NO production to modulate the firing rate of magnocellular neurons of the supraoptic nucleus of rats. Neuroscience, 2013, 250, 70-79.                                       | 1.1 | 13        |
| 28 | Transient potassium fluxes in toad skin. Journal of Membrane Biology, 1979, 49, 199-233.                                                                                                            | 1.0 | 11        |
| 29 | Transients in toad skin: Short circuit current and ionic fluxes related to inner sodium substitution by monovalent cations. Journal of Membrane Biology, 1978, 39, 369-385.                         | 1.0 | 10        |
| 30 | Memory in Ion Channel Kinetics. Acta Biotheoretica, 2021, 69, 697-722.                                                                                                                              | 0.7 | 8         |
| 31 | Toad bladder amiloride-sensitive channels reconstituted into planar lipid bilayers. Journal of<br>Membrane Biology, 1992, 127, 121-8.                                                               | 1.0 | 5         |
| 32 | The Resting Potential of Mouse Leydig Cells: Role of an Electrogenic Na+/K+ Pump. Journal of<br>Membrane Biology, 2003, 191, 123-131.                                                               | 1.0 | 5         |
| 33 | Mass spectrometry study of N-alkylbenzenesulfonamides with potential antagonist activity to potassium channels. Amino Acids, 2016, 48, 445-459.                                                     | 1.2 | 4         |
| 34 | Osmoregulation and the Hypothalamic Supraoptic Nucleus: From Genes to Functions. Frontiers in Physiology, 2022, 13, .                                                                               | 1.3 | 2         |
| 35 | 4-Chloro-3-nitro-N-butylbenzenesulfonamide acts on KV3.1 channels by an open-channel blocker mechanism. Amino Acids, 2017, 49, 1895-1906.                                                           | 1.2 | 1         |
| 36 | Benzenesulfonamides act as open-channel blockers on KV3.1 potassium channel. Amino Acids, 2019, 51,<br>355-364.                                                                                     | 1.2 | 1         |

| #  | Article                                                                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Contributory presentations/posters. Journal of Biosciences, 1999, 24, 33-198.                                                                                                  | 0.5 | 0         |
| 38 | Luteotropic Hormone (LH) effects on Tâ€ŧype calcium currents and intracellular calcium transients are<br>mediated by PKA in mice Leydig cells. FASEB Journal, 2010, 24, 816.8. | 0.2 | 0         |