Alexander Kotrschal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8843475/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sexâ€specific inbreeding depression: A metaâ€analysis. Ecology Letters, 2022, 25, 1009-1026.	6.4	15
2	Smallâ€scale dams deplete frogs and toads. Conservation Science and Practice, 2022, 4, .	2.0	0
3	Hybridization May Promote Variation in Cognitive Phenotypes in Experimental Guppy Hybrids. American Naturalist, 2022, 200, 607-619.	2.1	2
4	Predation impacts brain allometry in female guppies (Poecilia reticulata). Evolutionary Ecology, 2022, 36, 1045-1059.	1.2	3
5	Different mating contexts lead to extensive rewiring of female brain coexpression networks in the guppy. Genes, Brain and Behavior, 2021, 20, e12697.	2.2	6
6	The link between relative brain size and cognitive ageing in female guppies (Poecilia reticulata) artificially selected for variation in brain size. Experimental Gerontology, 2021, 146, 111218.	2.8	6
7	Meta-analytic evidence that animals rarely avoid inbreeding. Nature Ecology and Evolution, 2021, 5, 949-964.	7.8	27
8	Early predation risk shapes adult learning and cognitive flexibility. Oikos, 2021, 130, 1477-1486.	2.7	12
9	Fast lifeâ€histories are associated with larger brain size in killifishes. Evolution; International Journal of Organic Evolution, 2021, 75, 2286-2298.	2.3	12
10	Where are they now? Tracking the Mediterranean lionfish invasion via local dive centers. Journal of Environmental Management, 2021, 298, 113354.	7.8	10
11	Rapid mosaic brain evolution under artificial selection for relative telencephalon size in the guppy () Tj ETQq1 1 (0.784314	rgBT_/Overloc
12	Brain size affects responsiveness in mating behaviour to variation in predation pressure and sex ratio. Journal of Evolutionary Biology, 2020, 33, 165-177.	1.7	10
13	Artificial selection for schooling behaviour and its effects on associative learning abilities. Journal of Experimental Biology, 2020, 223, .	1.7	6
14	Rapid evolution of coordinated and collective movement in response to artificial selection. Science Advances, 2020, 6, .	10.3	25
15	Experimental translocations to low predation lead to non-parallel increases in relative brain size. Biology Letters, 2020, 16, 20190654.	2.3	17
16	Body mass variation is negatively associated with brain size: Evidence for the fatâ€brain tradeâ€off in anurans. Evolution; International Journal of Organic Evolution, 2020, 74, 1551-1557.	2.3	14
17	Brain size does not predict learning strategies in a serial reversal learning test. Journal of Experimental Biology, 2020, 223, .	1.7	7
18	Relative Brain Size Is Predicted by the Intensity of Intrasexual Competition in Frogs. American Naturalist, 2020, 196, 169-179.	2.1	18

ALEXANDER KOTRSCHAL

#	Article	IF	CITATIONS
19	Fish Brains: Anatomy, Functionality, and Evolutionary Relationships. Animal Welfare, 2020, , 129-148.	1.0	4
20	Artificial selection on brain size leads to matching changes in overall number of neurons. Evolution; International Journal of Organic Evolution, 2019, 73, 2003-2012.	2.3	40
21	Yes, correct context is indeed the key: An answer to Haaveâ€Audet et al. 2019. Journal of Evolutionary Biology, 2019, 32, 1450-1455.	1.7	Ο
22	Reply to: Comparisons of static brain–body allometries across vertebrates must distinguish between indeterminate and determinate growth. Nature Ecology and Evolution, 2019, 3, 1405-1406.	7.8	1
23	Large brains, short life: selection on brain size impacts intrinsic lifespan. Biology Letters, 2019, 15, 20190137.	2.3	28
24	Investigating the role of body size, ecology, and behavior in anuran eye size evolution. Evolutionary Ecology, 2019, 33, 585-598.	1.2	14
25	Plastic changes in brain morphology in relation to learning and environmental enrichment in the guppy (<i>Poecilia reticulata</i>). Journal of Experimental Biology, 2019, 222, .	1.7	30
26	Brain size predicts behavioural plasticity in guppies (<i>Poecilia reticulata</i>): An experiment. Journal of Evolutionary Biology, 2019, 32, 218-226.	1.7	17
27	Large-brained frogs mature later and live longer. Evolution; International Journal of Organic Evolution, 2018, 72, 1174-1183.	2.3	49
28	Brain size affects performance in a reversal-learning test. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20172031.	2.6	91
29	Using activity and sociability to characterize collective motion. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170015.	4.0	25
30	Brain size does not impact shoaling dynamics in unfamiliar groups of guppies (Poecilia reticulata). Behavioural Processes, 2018, 147, 13-20.	1.1	11
31	Early neurogenomic response associated with variation in guppy female mate preference. Nature Ecology and Evolution, 2018, 2, 1772-1781.	7.8	30
32	Selection for relative brain size affects context-dependent male preferences, but not discrimination, of female body size in guppies. Journal of Experimental Biology, 2018, 221, .	1.7	14
33	Assortative interactions revealed by sorting of animal groups. Animal Behaviour, 2018, 142, 165-179.	1.9	12
34	Breakdown of brain–body allometry and the encephalization of birds and mammals. Nature Ecology and Evolution, 2018, 2, 1492-1500.	7.8	110
35	Evolutionary associations between host traits and parasite load: insights from Lake Tanganyika cichlids. Journal of Evolutionary Biology, 2017, 30, 1056-1067.	1.7	15
36	Predation pressure shapes brain anatomy in the wild. Evolutionary Ecology, 2017, 31, 619-633.	1.2	63

ALEXANDER KOTRSCHAL

#	Article	IF	CITATIONS
37	Female brain size affects the assessment of male attractiveness during mate choice. Science Advances, 2017, 3, e1601990.	10.3	61
38	Evolution of brain region volumes during artificial selection for relative brain size. Evolution; International Journal of Organic Evolution, 2017, 71, 2942-2951.	2.3	30
39	How predation shapes the social interaction rules of shoaling fish. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20171126.	2.6	120
40	An efficient method for sorting and quantifying individual social traits based on groupâ€level behaviour. Methods in Ecology and Evolution, 2017, 8, 1735-1744.	5.2	8
41	Seasonality and brain size are negatively associated in frogs: evidence for the expensive brain framework. Scientific Reports, 2017, 7, 16629.	3.3	44
42	On the role of body size, brain size, and eye size in visual acuity. Behavioral Ecology and Sociobiology, 2017, 71, 179.	1.4	40
43	Evolution of brain-body allometry in Lake Tanganyika cichlids. Evolution; International Journal of Organic Evolution, 2016, 70, 1559-1568.	2.3	18
44	Large Brains, Small Guts: The Expensive Tissue Hypothesis Supported within Anurans. American Naturalist, 2016, 188, 693-700.	2.1	59
45	Artificial selection on male genitalia length alters female brain size. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20161796.	2.6	17
46	Sexual selection impacts brain anatomy in frogs and toads. Ecology and Evolution, 2016, 6, 7070-7079.	1.9	29
47	Selection for brain size impairs innate, but not adaptive immune responses. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20152857.	2.6	39
48	No association between brain size and male sexual behavior in the guppy. Environmental Epigenetics, 2015, 61, 265-273.	1.8	10
49	Expression change in <i>Angiopoietin-1</i> underlies change in relative brain size in fish. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20150872.	2.6	23
50	The effect of brain size evolution on feeding propensity, digestive efficiency, and juvenile growth. Evolution; International Journal of Organic Evolution, 2015, 69, 3013-3020.	2.3	26
51	Brain size affects the behavioural response to predators in female guppies (<i>Poecilia reticulata</i>) Tj ETQq1 1	0,784314	l rgBT /Overle
52	Positive genetic correlation between brain size and sexual traits in male guppies artificially selected for brain size. Journal of Evolutionary Biology, 2015, 28, 841-850.	1.7	24
53	Rearing-Group Size Determines Social Competence and Brain Structure in a Cooperatively Breeding Cichlid. American Naturalist, 2015, 186, 123-140.	2.1	80
54	A larger brain confers a benefit in a spatial mate search learning task in male guppies. Behavioral Ecology, 2015, 26, 527-532.	2.2	100

ALEXANDER KOTRSCHAL

#	Article	IF	CITATIONS
55	Brain size affects female but not male survival under predation threat. Ecology Letters, 2015, 18, 646-652.	6.4	98
56	Comparative support for the expensive tissue hypothesis: Big brains are correlated with smaller gut and greater parental investment in Lake Tanganyika cichlids. Evolution; International Journal of Organic Evolution, 2015, 69, 190-200.	2.3	77
57	Developmental plasticity of growth and digestive efficiency in dependence of earlyâ€life food availability. Functional Ecology, 2014, 28, 878-885.	3.6	23
58	ARTIFICIAL SELECTION ON RELATIVE BRAIN SIZE REVEALS A POSITIVE GENETIC CORRELATION BETWEEN BRAIN SIZE AND PROACTIVE PERSONALITY IN THE GUPPY. Evolution; International Journal of Organic Evolution, 2014, 68, 1139-1149.	2.3	80
59	The mating brain: early maturing sneaker males maintain investment into the brain also under fast body growth in Atlantic salmon (Salmo salar). Evolutionary Ecology, 2014, 28, 1043-1055.	1.2	8
60	The benefit of evolving a larger brain: big-brained guppies perform better in a cognitive task. Animal Behaviour, 2013, 86, e4-e6.	1.9	62
61	Artificial Selection on Relative Brain Size in the Guppy Reveals Costs and Benefits of Evolving a Larger Brain. Current Biology, 2013, 23, 168-171.	3.9	376
62	Sex-specific plasticity in brain morphology depends on social environment of the guppy, Poecilia reticulata. Behavioral Ecology and Sociobiology, 2012, 66, 1485-1492.	1.4	71
63	Inside the heads of David and Goliath: environmental effects on brain morphology among wild and growthâ€enhanced coho salmon <i>Oncorhynchus kisutch</i> . Journal of Fish Biology, 2012, 81, 987-1002.	1.6	45
64	Life-stage specific environments in a cichlid fish: implications for inducible maternal effects. Evolutionary Ecology, 2012, 26, 123-137.	1.2	17
65	Extreme Sexual Brain Size Dimorphism in Sticklebacks: A Consequence of the Cognitive Challenges of Sex and Parenting?. PLoS ONE, 2012, 7, e30055.	2.5	57
66	A noninvasive method to determine fat content in small fish based on swim bladder size estimation. Journal of Experimental Zoology, 2011, 315A, 408-415.	1.2	5
67	Resource Defence or Exploded Lek? – A Question of Perspective. Ethology, 2010, 116, 1189-1198.	1.1	14
68	Environmental Change Enhances Cognitive Abilities in Fish. PLoS Biology, 2010, 8, e1000351.	5.6	147
69	Telomere Attrition Due to Infection. PLoS ONE, 2008, 3, e2143.	2.5	136
70	Stress impacts telomere dynamics. Biology Letters, 2007, 3, 128-130.	2.3	178