Vincent W Keng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8843438/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sleeping Beauty insertional mutagenesis screen identifies the pro-metastatic roles of CNPY2 and ACTN2 in hepatocellular carcinoma tumor progression. Biochemical and Biophysical Research Communications, 2021, 541, 70-77.	2.1	12
2	ZBTB20 regulates WNT/CTNNB1 signalling pathway by suppressing PPARG during hepatocellular carcinoma tumourigenesis. JHEP Reports, 2021, 3, 100223.	4.9	13
3	EPHB2 Activates β-Catenin to Enhance Cancer Stem Cell Properties and Drive Sorafenib Resistance in Hepatocellular Carcinoma. Cancer Research, 2021, 81, 3229-3240.	0.9	59
4	Transgenic Mice. , 2021, , 5197-5204.		0
5	Schwann cell-specific Pten inactivation reveals essential role of the sympathetic nervous system activity in adipose tissue development. Biochemical and Biophysical Research Communications, 2020, 531, 118-124.	2.1	2
6	Correction: Co-targeting the MAPK and PI3K/AKT/mTOR pathways in two genetically engineered mouse models of schwann cell tumors reduces tumor grade and multiplicity. Oncotarget, 2020, 11, 3618-3620.	1.8	0
7	Râ€spondin 2 Drives Liver Tumor Development in a Yesâ€Associated Proteinâ€Dependent Manner. Hepatology Communications, 2019, 3, 1496-1509.	4.3	15
8	Schwann cell-specific PTEN and EGFR dysfunctions affect neuromuscular junction development by impairing Agrin signaling and autophagy. Biochemical and Biophysical Research Communications, 2019, 515, 50-56.	2.1	7
9	HBx-K130M/V131I Promotes Liver Cancer in Transgenic Mice via AKT/FOXO1 Signaling Pathway and Arachidonic Acid Metabolism. Molecular Cancer Research, 2019, 17, 1582-1593.	3.4	29
10	Sodium tanshinone IIA sulfonate ameliorates hepatic steatosis by inhibiting lipogenesis and inflammation. Biomedicine and Pharmacotherapy, 2019, 111, 68-75.	5.6	28
11	Liver-Specific Delivery of Sleeping Beauty Transposon System by Hydrodynamic Injection for Cancer Gene Validation. Methods in Molecular Biology, 2019, 1907, 185-196.	0.9	2
12	Conditional Inactivation of <i>Nf1</i> and <i>Pten</i> in Schwann Cells Results in Abnormal Neuromuscular Junction Maturation. G3: Genes, Genomes, Genetics, 2019, 9, 297-303.	1.8	4
13	Transgenic Mice. , 2019, , 1-8.		0
14	Chronic liver injury alters driver mutation profiles in hepatocellular carcinoma in mice. Hepatology, 2018, 67, 924-939.	7.3	36
15	Targeting of AKT / ERK / CTNNB 1 by DAW 22 as a potential therapeutic compound for malignant peripheral nerve sheath tumor. Cancer Medicine, 2018, 7, 4791-4800.	2.8	13
16	<i>Sleeping Beauty</i> Insertional Mutagenesis in Mice Identifies Drivers of Steatosis-Associated Hepatic Tumors. Cancer Research, 2017, 77, 6576-6588.	0.9	40
17	The CCCTC-binding factor (CTCF)-forkhead box protein M1 axis regulates tumour growth and metastasis in hepatocellular carcinoma. Journal of Pathology, 2017, 243, 418-430.	4.5	29
18	Insertional Mutagenesis Identifies a STAT3/Arid1b/β-catenin Pathway Driving Neurofibroma Initiation. Cell Reports, 2016, 14, 1979-1990.	6.4	55

VINCENT W KENG

#	Article	IF	CITATIONS
19	Transposon mouse models to elucidate the genetic mechanisms of hepatitis B viral induced hepatocellular carcinoma. World Journal of Gastroenterology, 2015, 21, 12157.	3.3	8
20	Mouse models of cancer: Sleeping Beauty transposons for insertional mutagenesis screens and reverse genetic studies. Seminars in Cell and Developmental Biology, 2014, 27, 86-95.	5.0	22
21	Co-targeting the MAPK and PI3K/AKT/mTOR pathways in two genetically engineered mouse models of schwann cell tumors reduces tumor grade and multiplicity. Oncotarget, 2014, 5, 1502-1514.	1.8	68
22	Canonical Wnt/β-catenin Signaling Drives Human Schwann Cell Transformation, Progression, and Tumor Maintenance. Cancer Discovery, 2013, 3, 674-689.	9.4	87
23	Sex bias occurrence of hepatocellular carcinoma in Poly7 molecular subclass is associated with <i>EGFR</i> . Hepatology, 2013, 57, 120-130.	7.3	52
24	Forward genetic screen for malignant peripheral nerve sheath tumor formation identifies new genes and pathways driving tumorigenesis. Nature Genetics, 2013, 45, 756-766.	21.4	137
25	Identification of Rtl1, a Retrotransposon-Derived Imprinted Gene, as a Novel Driver of Hepatocarcinogenesis. PLoS Genetics, 2013, 9, e1003441.	3.5	76
26	Modular assembly of transposon integratable multigene vectors using RecWay assembly. Nucleic Acids Research, 2013, 41, e92-e92.	14.5	13
27	Conditional Inactivation of <i>Pten</i> with <i>EGFR</i> Overexpression in Schwann Cells Models Sporadic MPNST. Sarcoma, 2012, 2012, 1-12.	1.3	33
28	A <i>Sleeping Beauty</i> mutagenesis screen reveals a tumor suppressor role for <i>Ncoa2/Src-2</i> in liver cancer. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E1377-86.	7.1	67
29	<i>PTEN</i> and <i>NF1</i> Inactivation in Schwann Cells Produces a Severe Phenotype in the Peripheral Nervous System That Promotes the Development and Malignant Progression of Peripheral Nerve Sheath Tumors. Cancer Research, 2012, 72, 3405-3413.	0.9	72
30	Why men are at higher risk for hepatocellular carcinoma?. Journal of Hepatology, 2012, 57, 453-454.	3.7	38
31	Modeling hepatitis B virus X-induced hepatocellular carcinoma in mice with the sleeping beauty transposon system. Hepatology, 2011, 53, 781-790.	7.3	58
32	Efficient Transposition of <i>Tol2</i> in the Mouse Germline. Genetics, 2009, 183, 1565-1573.	2.9	34
33	A conditional transposon-based insertional mutagenesis screen for genes associated with mouse hepatocellular carcinoma. Nature Biotechnology, 2009, 27, 264-274.	17.5	194
34	Generating mutant rats using the Sleeping Beauty transposon system. Methods, 2009, 49, 236-242.	3.8	17
35	A facile method for somatic, lifelong manipulation of multiple genes in the mouse liver. Hepatology, 2008, 47, 1714-1724.	7.3	53
36	Translation from nonautonomous type IAP retrotransposon is a critical determinant of transposition activity: Implication for retrotransposon-mediated genome evolution. Genome Research, 2008, 18, 859-868.	5.5	10

VINCENT W KENG

#	Article	IF	CITATIONS
37	Retrotransposons Influence the Mouse Transcriptome: Implication for the Divergence of Genetic Traits. Genetics, 2007, 176, 815-827.	2.9	26
38	Germline mutagenesis mediated by Sleeping Beauty transposon system in mice. Genome Biology, 2007, 8, S14.	9.6	28
39	Sleeping Beauty Transposase Has an Affinity for Heterochromatin Conformation. Molecular and Cellular Biology, 2007, 27, 1665-1676.	2.3	46
40	Transposon-tagged mutagenesis in the rat. Nature Methods, 2007, 4, 131-133.	19.0	88
41	Sleeping Beauty Transposon-Based Phenotypic Analysis of Mice: Lack of Arpc3 Results in Defective Trophoblast Outgrowth. Molecular and Cellular Biology, 2006, 26, 6185-6196.	2.3	49
42	Region-specific saturation germline mutagenesis in mice using the Sleeping Beauty transposon system. Nature Methods, 2005, 2, 763-769.	19.0	112
43	Identification and Characterization of the Hematopoietic Cell-Specific Enhancer-Like Element of the Mouse Hex Gene. Journal of Biochemistry, 2004, 135, 259-268.	1.7	10
44	Identification of the Transactivating Region of the Homeodomain Protein, Hex. Journal of Biochemistry, 2004, 135, 217-223.	1.7	18
45	Characterization of Sleeping Beauty Transposition and Its Application to Genetic Screening in Mice. Molecular and Cellular Biology, 2003, 23, 9189-9207.	2.3	146
46	Insulin Stimulates Expression of the Pyruvate Kinase M Gene in 3T3-L1 Adipocytes. Bioscience, Biotechnology and Biochemistry, 2003, 67, 1272-1277.	1.3	19
47	Homeobox Gene Hex Is Essential for Onset of Mouse Embryonic Liver Development and Differentiation of the Monocyte Lineage. Biochemical and Biophysical Research Communications, 2000, 276, 1155-1161.	2.1	174
48	cDNA cloning and expression of rat homeobox gene, Hex, and functional characterization of the protein. Biochemical Journal, 1999, 339, 111-117.	3.7	75
49	cDNA cloning and expression of rat homeobox gene, Hex, and functional characterization of the protein. Biochemical Journal, 1999, 339, 111.	3.7	27
50	Expression of Hex mRNA in early murine postimplantation embryo development. FEBS Letters, 1998, 426, 183-186.	2.8	50